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Cattle are naturally colonized by enterohemorrhagic Escherichia coli within the 

gastrointestinal tract.  The most notorious of the enterohemorrhagic E. coli is E. coli 

O157:H7, which can cause serious illness to humans if ingested.  To ensure that the 

United States has a safe food supply, research is ongoing in pre-harvest food safety and 

pathogen intervention strategies.  While advances in pre-harvest intervention strategies 

are encouraging, no method has proven to completely eliminate and/or control O157:H7.  

A key limitation to successful pathogen intervention strategies is the inability to track and 

monitor pathogens in a real-time fashion.   Through the use of bioluminescent plasmids 

harboring the luxCDABE cassette, pathogen tracking could be a viable solution.  

Bioluminescent plasmids are capable of facilitating the tracking, pathogenesis and 

physical locations of pathogens, thus enabling researchers to have a better understanding 

of the pathogenic process. 
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CHAPTER I 

INTRODUCTION 

In 2011, Escherichia coli O157:H7 was responsible for the recalls of an estimated 

1 million pounds of ground beef due to possible contamination (USDA-FSIS, 2011).   

Escherichia coli O157:H7 was first identified as a pathogen in 1982 (Wetzel and LeJeune 

2006) and was linked to undercooked meat.  The primary means for human contraction of 

E. coli O157:H7 is through the ingestion of raw or undercooked meat, water runoff from 

cattle environments (Armstrong et al., 1996) and/or animal-to-person contact (Wetzel and 

LeJeune, 2006).   

Cattle are a reservoir for O157:H7 and contribute to the spread, as well as the 

epidemiology of human O157:H7 infection (Griffin and Tauxe, 1991; Sargeant et al., 

2006).  Escherichia coli O157:H7 has the ability to colonize within the gastrointestinal 

tract of cattle without inflicting clinical illness and subsequently enabling cattle to 

become a host for O157:H7 (Low et al., 2005).  Cattle lack the globotriaosylceramide 

(Gb3) receptor shiga toxins within the large intestine bind to, thus why cattle are able to 

harbor O157:H7 within the gastrointestinal tract but remain symptomatic (Hoey et al., 

2002).  Escherichia coli O157:H7 prevalence studies estimate that approximately 30% of 

cattle throughout the United States harbor this pathogen in their feces (Elder et al., 2000; 

Callaway et al., 2003).   

Many pre-harvest strategies have been implemented by researchers to potentially 

reduce and/or eliminate O157:H7 within cattle such as vaccinations, direct-fed microbials 
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and diet manipulations.  Although some intervention strategies have proven to reduce 

O157:H7 populations, none have completely eradicated O157:H7 or proven to be 

repeatable and consistent.  One of the main limitations associated with pre-harvest 

intervention development is the inability to physically track O157:H7 in real-time.  

A potential solution to the inability to monitor pathogens is through the 

implementation of bioluminescent plasmids.  Bioluminescent plasmids that contain the 

luxCDABE operon encode enzymes responsible for synthesis of the luciferase (Meighen, 

1993).  These plasmids can then be introduced into pathogens, which can then be 

monitored through an intensified charged-couple device camera (Ryan et al., 2011).  

Employing bioluminescence in vivo can potentially facilitate tracking of pathogens 

(Contag et al., 1997), allowing for the indication of the physical location (Siragusa et al., 

1999) and thus increasing researchers understanding of pathogenic processes (Contag et 

al., 1995) of O157:H7. 
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CHAPTER II 

LITERATURE REVIEW 

Escherichia coli O157:H7 and pre-harvest food safety 

The bacterium Escherichia coli (E. coli) is one of the most commonly isolated 

bacteria in throughout the meat and food industries (Matic et al., 1997).  Escherichia coli 

are gram-negative, facultative anaerobic, rod-shaped bacteria that are non-sporulating 

with an optimal growth at 37°C.  There are over 700 known serotypes of E. coli (Ray and 

Schaffer, 2011).  Serotyping as a means of identifying various serovars of E. coli is 

achieved by serotyping by antigens.  In example E.coli O157:H7 indicates that the O 

antigen encompasses the cell wall outer membrane or somatic antigen number 157, while 

the H antigen indicates the flagella antigen 7.  The O antigen is part of the 

lipopolysaccharide present in the outer membrane of bacteria (Sheng et al., 2008).   

While most E.coli are non-pathogenic, certain serotypes of E. coli can be 

pathogenic; these pathogens account for devastating foodborne related diseases 

throughout the world (Doyle, 1991; Hilborn et al., 1999; Vogt and Dippold, 2005).  

Nonpathogenic E. coli are cultured in the normal flora of warm blooded animal’s 

gastrointestinal (GI) tracts (Rembacken et al., 1999; Guarner and Malagelada, 2003).  

Nonpathogenic E. coli can also prevent pathogenic E. coli from colonizing within the 

intestine by providing a protective barrier (Hudault et al., 2000; Reid et al., 2001).   

Nonpathogenic bacteria can provide colonization resistance such as a protective barrier, 
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in which bacteria can uphold an ecological balance and prevent pathogenic bacteria from 

colonizing through competitive exclusion (van der Waauj et al., 1971; Rolfe, 2000). 

Growth and reproduction of Escherichia coli 

Typical growth patterns of E. coli and other bacteria are measured in four 

different phases: lag phase, log phase, stationary phase and death phase (Roszak and 

Colwell, 1987).  When bacteria are introduced to medium, adjustment to the surrounding 

environment and growth conditions will occur, thus representing lag phase (Baranyi, 

2002).  The log phase or also known as exponential phase is characterized by cell growth, 

where bacteria exhibit continual doubling bacterial populations (Jensen and Hammer, 

1993) until the nutrients of the medium utilized are depleted and cellular waste products 

accumulate (Kolter et al., 1993).  When the growth rate begins to decrease due to lack of 

nutrients, bacteria will enter stationary phase.  Stationary phase is characterized by a 

stable and constant rate of bacterial growth that is equivalent to the rate of bacterial death 

(Delpy et al., 1956).  After all nutrients have been depleted death phase emerges and 

bacteria will begin to die.  

Bacteria such as E. coli reproduce by means of binary fission. The single 

bacterium will elongate during the growth phase, reaching twice its length, and binary 

fission will occur (Angert, 2005).  The single cell bacterium’s DNA replicates and 

segregates into two identical chromosomes (Donachie, 2001).  After the chromosomal 

segregation within the bacterium the individual chromosomes will move to opposite ends 

of the bacterium (Donachie, 2001).  This allows for cytokinesis, which involves the 

actual splitting of the bacterium into two identical daughter cells (Angert, 2005). 
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Escherichia coli virulence groups 

Pathogenic E. coli can be broken down into five groups, based on virulence 

attributes (Johnson, 1991).  These five groups are enterotoxigenic (ETEC), 

enteroaggregative (EAggEC), enteropathogenic (EPEC), enteroinvasive (EIEC) and 

enterohemorrhagic (EHEC; Levine, 1987).  The ETEC utilize fimbriae, which are hair-

like structures on the outer membrane and are shorter than flagella.  The ETEC use 

fimbriae to attach to the specific receptors on enterocytes within the intestinal lumen 

(Levine and Edelman, 1984).  The ETEC virulence group can produce heat-stable and/or 

heat liable enterotoxins (Moseley et al., 1980).  This virulence group is the primary cause 

of traveler’s diarrhea which results from an accumulation of fluid and electrolytes within 

the GI tract lumen (Levine, 1987).  Common ETEC serogroups include O8, O139, O141, 

O147 and O149 (Nagy and Fekete, 1999). 

Enteroaggregative E. coli (EAggEC) or also known as enteroadherent, are one of 

the newest E. coli virulence groups.  The EAggEC have fimbriae similar to ETEC that 

attach to the intestinal epithelial cells and some strains are capable of producing a heat-

stable enterotoxin (Kaper et al., 2004).  The result from an EAggEC infection results in 

watery diarrhea, and is usually observed in children in developing countries (Nataro et 

al., 1995).  In comparison to the other virulence groups, EAggEC has a longer incubation 

period within humans, which has been estimated to be 20 to 48 hours (Steiner et al., 

1998).  Commonly isolated EAggEC serogroups include O44 and O3 (Steiner et al., 

1998).  

The enteropathogenic E. coli (EPEC) possess the eae gene, responsible for the 

attachment and effacement (A/E) lesions that occur on the intestinal lining of the host 

(Kaper et al., 2004).  The EPEC group does not generally produce enterotoxins, but can 
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adhere to the intestinal mucosa (Levine et al., 1978). The EPEC are commonly observed 

in infant’s diarrhea (Levine and Edelman, 1984).  Common serogroups within the EPEC 

virulence group are O111 and O55 (Levine et al., 1978). 

Enteroinvasive E. coli (EIEC) are extremely invasive serotypes of E. coli that 

utilizes adhesion proteins to bind and enter the intestinal cells (Resta-Lenert and Barrett, 

2003).  Although EIEC do not produce any toxins, the intestinal wall is severely damaged 

by the rapid colonization and implementation of adhesion proteins within the intestinal 

epithelial cells (Resta-Lenert and Barrett, 2001).  Patients infected with EIEC usually 

have symptoms that include bloody voluminous diarrhea, blood and mucus in the stool, 

abdominal cramps, vomiting, fever, chills and malaise (Simonovic et al., 2000).  

Common serogroups of EIEC include O124, O28 and O112 (Pupo et al., 1997). 

Enterohemorrhagic E. coli (EHEC) are the most widely known virulence group.  

This group of E. coli possesses the eae gene that produces the A/E lesions responsible for 

producing shiga-like toxins.  The EHEC virulence group utilizes the protein, intimin.  

Intimin aids in the adhesion of A/E lesions to the microvillus of the intestinal wall by 

intimately attached to the translocated intimin receptor (tir).   Susceptible cells within the 

large intestine have shiga toxin receptors that allow binding of the shiga toxins.  These 

receptors are the globotriaosylceramide (Gb3) receptors, part of the glycolipid 

globotriaosylceramide family.  Monogastrics, including humans, have Gb3 receptors 

whereas cattle lack the Gb3 receptor (Pruimboom-Brees et al., 2000). 

The Gb3 receptors are established within the entire GI tract (duodenum, ileum, 

jejunum, colon and cecum) and within the kidney (Hoey et al., 2002). When shiga toxins 

bind to the Gb3 receptor, the shiga toxin is then able to enter the cell and inhibit protein 

synthesis (Ling et al., 1998).   The adherence of the shiga toxin to the intestinal mucosa 
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causes a rearrangement of actin in the host cell, causing significant deformation and death 

of the host cells (Strockbine et al., 1986).  The deformed cells are sloughed off the 

intestinal lining into the intestinal tract which leads to accumulation of fluids 

subsequently causing diarrhea (Griffin and Tauxe, 1991).  The damage to the intestinal 

lining of the host may lead to hemorrhaging, evident by bloody diarrhea (Riley et al., 

1983).  In severe cases, EHEC may enter the bloodstream causing septicemia, renal 

failure, hemolytic uremic syndrome (HUS) or thrombotic thrombocytopenic purpura 

(Griffin and Tauxe, 1991).   Common serogroups of EHEC are O157, O26, O145, O103 

and O111 (Fagen et al., 1999). 

Escherichia coli O157:H7 

The EHEC serotype Escherichia coli O157:H7 was first associated with a major 

foodborne outbreak in 1982 and has since been commonly linked to foodborne cases 

associated with the consumption of contaminated, undercooked meat (Wetzel and 

LeJeune, 2006).  In 2011, there was an estimated 1 million pounds of ground beef 

recalled due to possible O157:H7 contamination (USDA-FSIS, 2011).  In 2010, Scharff 

reported O157:H7 cost United States residents approximately $1 billion in premature 

deaths, lost wages and hospital bills, totaling approximately $15,000 per case of O157:H7 

illness (Scharff, 2010).  Severity of illness can affect cost as well, ranging from $26 for 

an individual who did not receive medical care to $6.2 million for a death of a patient that 

suffered from HUS (Frenzen et al., 2005).   

According to the Center for Disease Control (CDC), 265,000 shiga toxin-

producing Escherichia coli infections were documented in 2010, of which O157:H7 

comprises 33% of these infections (CDC, 2011).  The O157:H7 serotype is a virulent 
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serotype with an infectious dose of ≤ 50 cells (Besser et al., 1999).  Children and the 

elderly are the most susceptible to infections due to their weakened immature 

immunological state (Fox et al., 2009).  It is because of the severity associated with 

consumption of contaminated food products that the food and meat industries have 

invested more than $2 billion in intervention strategies within the processing plant (Kay, 

2003; Koohmaraie et al., 2005).   

Infection due to O157:H7 generally occurs through ingestion of contaminated 

products.  Although the most common route of human O157:H7 infection is through the 

consumption of raw or undercooked meat, infections can result from other sources as 

well.  For instance water runoff from ruminant environments (Armstrong et al., 1996) 

contaminated with feces used to irrigate crops (i.e. spinach and lettuce), the products can 

potentially become contaminated.  Direct human interactions within various 

environments, such as cattle or other livestock facilities (Wetzel and LeJeune, 2006), 

petting zoos and swimming pools have also been suggested as potential environments 

where inoculation of O157:H7 can occur (Rangel et al., 2005). 

Shiga toxin-producing Escherichia coli (STEC) 

While most research of enterohemorrhagic E. coli (EHEC) has traditionally 

focused on O157:H7, there has been an increase in outbreaks of non-O157 strains of 

shiga toxin-producing E. coli (STEC).   In fact, the CDC estimates that nearly 77% of all 

E.coli associated infections are due to non-O157 serogroups.  The six additional STEC 

serogroups that the food and meat industry are concerned with include: O26, O45, O103, 

O111, O121 and O145 (Paddock et al., 2011).  It has been traditionally believed that 

these non-O157 serogroups grow similarly as O157:H7 (Beutin et al., 1994).  However, a 
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study recently conducted within our laboratory group suggests that the responses of these 

non-O157 serogroups are not universally the same as O157:H7.   

The characterization of STEC involves each serogroup having capabilities to 

produce shiga toxins (Fratmico et al., 2004).  Shiga toxins are compound toxins 

consisting of one A subunit and five B subunits which are linked by a disulfide bond 

(Paton and Paton, 1998).  The A subunit inhibits protein synthesis by removing an 

adenine from the ribosome (O’Brien et al., 1987). The B subunits bind to the glycolipid 

receptors on the surface of the target cell and aids in endocytosis (O’Brien et al., 1987).  

Once the shiga toxin crosses the epithelial barrier within its host, it will then enter the 

bloodstream and target the Gb3 receptors, thus inhibiting protein synthesis and causing 

lysis of the cells (Paton and Paton, 1998). 

The STEC can produce shiga toxin I (stx1), and/or, shiga toxin II (stx2).  Both of 

which have virtually the same biological activities (Strockbrine et al., 1986).  The stx1 is 

serologically identical to the Shigella dysenteriae toxin (O’Brien et al., 1987).  The stx2 

can be serologically differentiated from stx1 and Shigella dysenteriae, although all 

biological activities are similar (Strockbine et al., 1986).  Studies have suggested that 

E.coli that produce stx2 are more virulent than E. coli that produce stx1 (Dorn et al., 1989; 

Wadolkowski et al., 1991; Arthur et al., 2002).   The increase in virulence and association 

of stx2 to HUS is thought to be from the increased transcription rate in vivo, as opposed to 

stx1 and the combination of both (Paton and Paton, 1998). 

The O26 STEC harbors the stx1 gene most predominately, but some strains of 

O26 are able harbor the stx2 or the combinations of both genes (Arthur et al., 2002). The 

stx1 gene can be harbored by O103, O45, O111, O121 and O145.  Some STEC can harbor 

both shiga toxins such as O45, O111, O111 and O145.  Although able to harbor the 
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combination of both shiga toxins, O45 and O111 cannot exclusively harbor stx2 alone 

(Kaper et al., 1998)   

Certain strains of STEC are capable of producing A/E lesions on enterocytes that 

rearranges the host actin, disassembling the microvillus and forming actin pedestals 

(Francis et al., 1986).  All genes, including shiga toxin genes required for the A/E 

adherence and lesions are located on a single pathogenicity island referred to as the locus 

for enterocyte effacement (LEE; Donnenberg et al., 1997).  The LEE is a cluster of genes 

that encode for a type III secretion system which aids in expressing the eae genes 

(O’Brien et al., 1987).  The type III secretion system secretes translocated effector 

proteins such as EspA, EspB and EspD which are responsible for the initiation of signal 

transduction events (Paton and Paton, 1998).  The eae gene is responsible for encoding 

the outer membrane protein, intimin and its receptor tir, which the binding of both 

proteins is responsible for the intimate attachment to the enterocyte (O’Brien et al., 1987; 

Kenny et al., 1997).   Enterohemolysin is expressed through the eae gene and lyses 

erythrocytes to acquire iron to support growth of STEC (Paton and Paton, 1998).  These 

virulence factors are responsible for A/E of the intestinal surface and can aid in virulence, 

but are not necessarily the cause of severe human illnesses (Donnenburg, 1993).  

Although these factors are characteristics of O157:H7, research suggests these factors are 

more common in pathogenic non-O157 strains, such as STEC (Beutin et al., 1994).  

In 2010, the incidences of O157:H7 decreased to reach the national target of ≤ 1 

case per 100,000 (CDC, 2011).  Implementing pathogen prevention strategies in the 

abattoir and further processing plants such as hide and carcass washes, antimicrobial 

treatments, HACCP policies, cleanliness and good sanitation practices have lead to 

decreased O157:H7 populations (Elder, 2000).  While the O157:H7 related outbreaks in 
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humans and animals have decreased, there has been an observed increase in non-O157 

incidences.  In response to this increase in prevalence, starting June of 2012 the USDA-

FSIS will classify the STEC serotypes O26, O45, O103, O111, O121 and O145 as 

adulterants in non-intact raw beef and prohibit sale of any contaminated products 

(USDA-FSIS, 2012).   

Role of enterohemorrhagic Escherichia coli in ruminant animals 

Enterohemorrhagic E. coli are capable of colonizing within the GI tract of many 

ruminants (Callaway, 2002).  Cattle are considered a major reservoir of O157:H7 (Low et 

al., 2005; Hussein et al., 2006; Ferens and Hovde, 2011).   Cattle are asymptomatic 

carriers and play a role in the epidemiology of human O157:H7 infections (Griffin and 

Tauxe, 1991; Sargeant et al., 2006).  One fecal prevalence study’s results have suggested 

that approximately 30% of cattle are carriers of O157:H7 (Elder et al., 2000; Callaway et 

al., 2002).  However, this can vary due to individual animal and season (Elder et al., 

2000).   

Studies have suggested that the large intestinal environment of cattle is selective 

for O157:H7 growth (Enss et al., 1996; Fox et al., 2009).  This selective environment is 

related to GI tract mucosal components: fucose, galactose, mannose, N-

acetylgalactosamine, N-acetylglucosamine, galacturonic acid, glucuronic acid and 

gluconic acid (Peekhaus and Conway, 1998; Fox et al., 2009).  Mucus and its 

glycoprotein constituent, mucin are secreted within the large intestine and are responsible 

for the defense mechanisms to prevent colonization of pathogenic bacteria.  Although a 

study conducted by Enss et al. (1996) indicated that another STEC serogroup O55 

(Ludwig et al., 1996), more specifically the O55:B5 strain was able to modify mucin, 
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thus creating a more favorable condition for growth of bacteria by aiding in A/E 

mechanisms.  These results suggest that other STEC such as O157:H7 may alter mucin to 

increase specific carbohydrate constituents, hence permitting O157:H7 to survive in the 

large intestine of cattle (Fox et al., 2009).  Research has suggested that these mucosal 

components promote colonization of E. coli (K-12 and F-18) in the mouse model, but not 

specifically O157:H7 (Peekhaus and Conway, 1998; Chang et al., 2004).  Although a 

more recent study conducted by Fox et al. (2009) suggested that more specifically 

gluconic acid may serve as a growth prominent for O157:H7 in the large intestine of beef 

cattle. These data further enhance the hypothesis that the extracellular components of the 

mucosal cells, such as mucin are able to serve as growth factors for O157:H7 (Miranda et 

al., 2004).   

Escherichia coli O157:H7 has also been isolated from the oral cavity (Keen and 

Elder, 2002), digesta (Laven et al., 2003), ruminal contents (Elder et al., 2000), and feces 

(Elder et al., 2002; Keen and Elder, 2002).  Some studies have suggested that the colon 

(Grauke et al., 2002) and the lymphoid tissue located at the recto-anal junction (Naylor et 

al., 2003) may be the primary colonization sites within the ruminants.  Researchers have 

suggested that the recto-anal junction is very closely involved with O157:H7 colonization 

(Greenquist et al., 2005; Davis et al., 2006; Lim et al., 2007) due to O157:H7 specificity 

for follicle-associated epithelium within the recto-anal junction (Naylor et al., 2003). 

Various serogroups of STEC (O7, O91, O146, O113, etc.) have been isolated 

from beef cattle (Beutin et al., 1997; Leomil et al., 2003), manure (Lahti et al., 2002) and 

raw beef (Kahn et al., 2002).  Hussein and Bollinger (2005) indicated that the prevalence 

of non-O157 STEC were increased compared to O157:H7 in packing plants, 

supermarkets and fast food restaurants.   
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Escherichia coli O157:H7 shedding in cattle 

Shedding of O157:H7 in cattle appears to very sporadic (i.e. animal, season, time) 

and widespread (Meyer-Broseta et al., 2001).  The amount and frequency of O157:H7 

shedding varies greatly due to individual animal and season (LeJeune et al., 2004; 

Stanford et al., 2005).  Although a number of various factors affect pathogen shedding, 

the only factor that has consistently been repeated is season (Edrington et al., 2006).  In 

shedding prevalence studies, results suggest that typically, there is an increase in fecal 

shedding in spring, with potential peaking at 80% in feedlot cattle in the summer months; 

then falling drastically in the fall months with least amount of fecal shedding, 5-10% in 

the winter months (Elder et al., 2000; Barkocy-Gallagher et al., 2003; Edrington et al., 

2006).  Outbreaks of O157:H7 in humans seem to shadow this seasonal trend, primarily 

occurring in the summer months (Rangel et al., 2005).  Cattle that are considered 

shedders of O157:H7 shed at a rate of <102 CFU/g of feces (Omisakin et al., 2003), 

whereas cattle that are considered super shedders can shed at least 104 CFU/g of feces 

(Chase-Topping et al., 2008).    

Prevalence of Escherichia coli O157:H7 on cattle hides 

Cattle can become infected and continually shed O157:H7 in feces up to 49 days 

(Wang et al., 1996).  Therefore, O157:H7 can spread to other cattle through physical 

contact; such as animal-to-animal or animal-to-environment (Collis et al., 2004; Wetzel 

and LeJeune, 2006).  These two routes are frequently the source of spread within the 

feedlot and transportation (Cuesta Alonso et al., 2007).  Studies have indicated an 

increase in the prevalence of O157:H7 on cattle hides, specifically during transportation 

(Collis et al., 2004; Stanford et al., 2011).   
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Cattle within confined spaces with greater numbers of cattle tend to have more 

filth and fecal matter on hides (Arthur et al., 2009).  Cattle hides at the time of harvest 

have been suggested to be one of the major sources of O157:H7 contamination on beef 

carcasses due to the increase fecal matter on the hides arriving at the abattoir (Nou et al., 

2003; Bosilevac et al., 2005; Arthur et al., 2007).  It has been reported that concentrations 

of E. coli, including O157:H7, can range from 102 to 107 CFU/g of feces at harvest 

(Jordan and McEwen, 1998).  Cattle with potentially contaminated hides that arrive at the 

harvesting facilities increase the risk of microbial contamination of the meat (Bacon et 

al., 2000; Elder et al., 2000; Midgley and Desmarchelier, 2001).  Even though carcasses 

are considered sterile after the hide has been removed, further contamination can occur 

through fabrication, viscera removal (Tutenel et al., 2003) and through contact with 

contaminated workers (Brackett, 1999). 

Escherichia coli pre-harvest intervention strategies 

Controlling and/or eliminating fecal shedding in cattle has been a major goal in 

pre-harvest food safety.  Intervention strategies have been installed within harvesting 

facilities, but still do not completely guarantee elimination of O157:H7, thus why 

researchers have put an emphasis on pre-harvest intervention strategies.  Currently there 

are no pre-harvest interventions strategies that have been successful because strategies 

have not been repeatable and consistent or cost effective to the producer.  According to 

Callaway (2010), pre-harvest intervention strategies can be divided into three basic 

categories: management practices and transport, cattle water and feed management and 

live animal treatments. 
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Management practices and transport 

Fundamental animal husbandry practices have long been essential to maximize 

production efficiency and ensure animal health and welfare.  Although O157:H7 is 

commonly isolated from a host, O157:H7 can survive within the environment as well.  

Studies have reported that O157:H7 can survive anywhere from 3 to 130 days within the 

soil (Maule, 2000).   

Biosecurity factors also play a role in the O157:H7 spread.  Cattle are not the only 

animals that able to harbor O157:H7 and all EHEC, pest such as rodents, birds, insects 

and flies can also harbor O157:H7 and can aid in the spread and epidemiology (Rice et 

al., 2003; Wetzel and LeJune, 2006; Ahmad et al., 2007).  Allowing other domesticated 

livestock animals on the farm (i.e. goats and sheep), pets (i.e. dogs and cats) and 

unintentional wild animals and fowl (i.e. deer, ducks, geese, and pheasants) have been 

associated with increased O157:H7 shedding within cattle (Synge et al., 2003; Gunn et 

al., 2007; French et al., 2010). 

Subsequently, O157:H7 is commonly indicated within a group of cattle as 

opposed to an entire farm, therefore it is suggested that cattle be placed within 

contemporary groups throughout the duration on the farm.  Overcrowding of cattle within 

a group or on a livestock trailer increases the possibility for fecal O157:H7 transmission.  

The trailers used during transportation of potential carriers of O157:H7 are effortless 

pathways for the spread of pathogens (Mather et al., 2007).  The trailers used to transport 

cattle from the feedlot to packer are frequently reported to test positive for O157:H7 but 

washing trailers did not decrease prevalence (Cuesta Alonso et al., 2007; Reicks et al., 

2007).   
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Cattle water and feed management 

Water sources shared by cattle are a common place where O157:H7 can be 

isolated.  Escherichia coli O157:H7 can survive for up to six months within water 

sources (Hancock et al., 1998; LeJeune et al., 2001).  Chlorination of the water supply 

within cattle water troughs has been tested as a possible solution to controlling the spread 

of O157:H7.  Consequently, outside environmental factors such as sunlight and organic 

matter contribute to the decrease of effectiveness of chlorination (LeJune et al., 2004).  

Chlorination has led to cattle refusal to drink treated water because of organic matter 

accumulation and the distinct chlorine smell and taste.  Electrolyzing water is another 

intervention strategy implemented in cattle drinking water.  This involves the electrolysis 

of deionized water with free-chlorine concentrations to decrease bacterial populations 

(Shimamune et al., 1996).  Electrolyzing water has been suggested to reduce O157:H7 

concentrations as an in-plant hide cleaning strategy (Bosilevac et al., 2005), but not as a 

water source strategy. 

Dietary manipulation has been a pre-harvest area researched in an attempt to 

reduce the O157:H7 burden before transportation and at the abattoir.  Previous research 

by Wolin (1969) suggested that increased concentrations of volatile fatty acids (VFA) 

and a decreased pH could possibly inhibit E.coli growth.  The toxicity of VFA on E.coli 

and other bacteria is due to the anion accumulation within the cell membrane when the 

pH is decreased (Russell, 1992).  Whole cottonseed has been linked to reduce O157:H7 

shedding because of the increase in short-chain VFA concentrations observed (Garber et 

al., 1995).  Corn silage, addition of animal by-products (i.e. blood meal, meat meal, 

feather meal; Herriott et al., 1998) barley (Dargatz et al., 1997), distiller’s grains (Jacob 

et al., 2008; Yang et al., 2010) and brewer’s grain (Dewell et al., 2005) are feed 
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ingredients that have been linked to increased fecal shedding of O157:H7 in cattle.  The 

fecal shedding is suggested to increase with use of these products because of the 

decreased effect on the short-chain VFA concentrations.   

There has also been extensive research in the last decade on whether concentrate 

or forage diets are advantageous at reducing shedding of O157:H7.  Concentrates are 

typically fed to feedlot cattle which are observed to have the greatest frequency of 

shedders (Tkalcic et al., 2000).  Steam-flaked concentrates have indicated to increase 

O157:H7 shedding, while dry rolled concentrates have reduced shedding (Fox et al., 

2007).  Interestingly, greater concentrations of O157:H7 were observed within the feces 

of concentrate-fed animals compared to forage-fed animals (Tkalcic et al., 2000).  

Forage-fed animals were observed to shed O157:H7 for longer periods of time; 60 days 

for forage-fed as opposed to 16 days grain-fed (Van Baale et al., 2004).  The O157:H7 

proliferation due to potential variation in VFA concentrations suggests that cattle fed 

concentrates shed greater concentrations of O157:H7 (Tkalcic et al., 2000).   

The amount and quality of forage also is important in dictating the amount and 

frequency of shedding.  Poor quality forages (i.e. straw) exhibited a faster and greater 

death rate of O157:H7 compared to superior quality forages (i.e. grass silage; Franz et al., 

2005). When cattle are suddenly changed from a full grain diet to a full forage diet, 

O157:H7 populations decreased (Diez-Gonzalez et al., 1998).   

Feed additives have been researched to attempt to reduce the populations and 

patterns of O157:H7 shedding.  Plant based products such as phenolics, essential oils and 

tannins have been evaluated for O157:H7 shedding reduction and/or elimination.  Min et 

al. (2007) reported that secondary metabolites from natural phenolic compounds exhibit 

bactericidal activities in gram-negative bacteria.  Research conducted with tannins has 
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reported to decrease populations of O157:H7 in vitro; although only concentrations of 

generic E. coli within the live animal were reduced (Min et al., 2007).  The Federal Drug 

Administration has recognized essential oils as generally safe for human and animal 

consumptions (FDA, 2004).  Essential oils contain microbial activity and are common 

components responsible for fragrance (Benchaar et al., 2008).  Essential oils from plants 

are added to diets in attempt to reduce O157:H7 concentrations because of the toxicity 

exhibited on the cell wall of gram-negative bacteria such as O157:H7 (Dusan et al., 

2006).  Essential oils have reduced O157:H7 populations within cattle, while increasing 

fermentation (Benchaar et al., 2008).   

Probiotics have previously been used by researchers to enhance production and 

health within the livestock (Tournut, 1989).  Probiotics have also been proposed as a 

method to reduce pathogenic bacteria.  By definition, probiotics are the use of live or 

dead cultures of microorganisms to alter the microbial environment of the GI tract.  

Probiotics within the GI tract, reduce pathogen concentrations by binding to the intestinal 

epithelium, subsequently preventing pathogens from binding (Collins et al., 1999).  There 

are a few probiotic varieties that have been produced to aid in the reduction of shedding: 

direct-fed microbials (DFM), competitive exclusion (CE) and prebiotics.   

Direct-fed microbials are fed to ruminants to improve ruminal fermentation.  

Direct-fed microbials are comprised of live or dead yeast, fungal or bacterial culture 

fermentation end-products (Callaway, 2009).  Previous research suggests that 

Streptococcus bovis, Lactobacillus gallinarum (Ohya et al., 2001), Lactobacillus 

acidilacti, Lactobacillus acidophilus (Brashears and Galyean, 2002) and Pediococus 

(Rodriguez-Palacios et al., 2009), have decreased O157:H7 concentrations in cattle.  
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Although research in direct-fed microbials is ongoing, the limiting factor is cost to the 

producer. 

The concept of CE includes introducing non-pathogenic bacteria of the same 

species to the GI tract with intentions of reducing pathogenic bacteria colonization and 

shedding within the animal (Nurmi et al., 1992).   The mechanisms of CE to reduce 

bacterial populations are to first create a hostile environment for other bacteria to survive 

within, eliminate bacterial receptor sites, produce and secrete antimicrobial metabolites 

and select and competitively deplete essential nutrients for other bacteria (Rolfe, 1991). 

The use of CE has reduced O157:H7 shedding for O111:NM and O26:H11 (Zhao et al., 

2003).   

Prebiotics are organic compounds that are indigestible by animals.  Prebiotics are 

able to pass through the GI tract until being utilized as nutrient sources by the microbial 

populations within a specific environment in the animal.  Prebiotics provide a 

competitive environment by competing with the pathogenic bacteria for nutrients and 

binding sites in the intestine (Zopf and Roth, 1996).  Research has proposed that a 

synbiotic relationship (coupling CE and prebiotics) could reduce O157:H7 

concentrations; by combining mechanisms of a competitive environment, elimination of 

receptors, and production of antimicrobial and depletion of nutrients available to 

pathogens (Bomba et al., 2002).  To date most probiotic treatments have not been 

implemented due to the great cost associated and lack of producer return.                

Colicins are a toxic exoproteins produced by E. coli strains that contain very 

specific cell wall receptors that apply an inhibitory effect on O157:H7, thus destroying or 

hindering growth by destroying the cell wall (Konisky, 1982; Smarda and Smajs, 1998).  

Callaway et al. (2004) indicated that colicins were effective in reducing O157:H7 in 
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vitro, while Cutler et al. (2007) indicated that colicins were effective in preventing other 

E. coli besides O157:H7 in vivo. Also, colicins have been supplemented to cattle diets, 

and research has reported a 2 log10 CFU/g in reduction of O157:H7 populations 

(Nandiwada et al., 2004).  Further research in this area is currently on-going but major 

barriers must be surmounted.   Possible barriers include the ability of colicins to become 

resist to certain strains overtime (Alonso et al., 2000), immunity proteins produced by 

certain O157:H7 strains against colicins (Murinda et al., 1998), GI tract degradation and 

the cost associated (Lui et al., 2011).   

Live animal Escherichia coli O157:H7 treatments 

Aside from dietary manipulation, researchers have also investigated live animal 

pre-harvest treatments.  Vaccinations, bacteriophages and sodium chlorate are the 

primary live animal treatments that are under investigation.  The E.coli and Salmonella 

vaccinations utilized within swine and poultry have been effective in reducing pathogens 

(Johansen et al., 2000).  Siderophore receptor and porin (SRP) protein vaccines are 

another vaccination being researched.  Escherichia coli O157:H7 releases siderophore 

proteins within the intestinal environment to acquire iron.  The SRP protein vaccination 

targets siderophores to obstruct the iron acquisition, thus leading to O157:H7 death.  

Recent research has indicated that the SRP injection has reduced O157:H7 concentrations 

by 98% in the feces (Thomson et al., 2009). The SRP protein vaccination is often not 

utilized because the cost is too great for producers to implement within production 

systems. 

The bacterial extract vaccination is a three-dose regiment produced from 

O157:H7 extracts, particularly type III secreted proteins. The host protein type III 
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secretions release the tir, an adhesion protein that will integrate into the cell membrane.  

Once tir protein is established on the O157:H7 cell membrane it becomes a receptor for 

intimin, another adhesion protein necessary for the intimate colonization of O157:H7 

(DeVinney et al., 1999).  Research has reported that the tir-intimin binding is vital in 

O157:H7 A/E of the intestine (DeVinney et al., 1999; Cornick et al., 2002).  The type III 

secretion vaccination introduces intiminO157 antibodies within the host and have decrease 

A/E lesions and colonization of the intestine of pigs (Dean-Nystrom et al., 2002).  

Research has indicated that this vaccine reduced O157:H7 shedding within cattle (Potter 

et al., 2004) and proposed to decrease shedding (McNeilly et al., 2010).  A study 

conducted by Smith et al. (2009) suggested a 92% less likely probability for cattle within 

feedlot environments to be colonized in the terminal rectum mucosa when administered 

as a two dose regimen of a type III secretion vaccine.  Research suggests that type III 

secreted protein vaccines and SRP vaccines have reduced fecal prevalence of O157:H7 

within cattle that are naturally exposed to O157:H7 (Snedeker et al., 2011).  Although, 

the results of vaccinations are promising and are approved for use in the United States 

(SRP and bacterial extract vaccines) and Canada (bacterial extract vaccines), producer 

use will remain uncertain because of cost and economic return and lack of study 

consistency.      

Bacteriophages (phages) are viruses that can invade bacteria within any organism.  

The idea behind implementing phages in pre-harvest food safety involves phages that 

have the ability to specifically target host bacteria.  When present, phages take over the 

target bacteria and replicate, continually releasing daughter cells to repeat the process 

(Callaway et al., 2008b).  Exponential growth will continue as long as the target bacteria 

are present.  One limiting factor to phage use is that phages can easily develop resistance.  
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Bacteriophages have been implemented to decrease O157:H7 populations in the ruminant 

GI tract (Bach et al., 2003; Callaway et al., 2008b; Rozema et al., 2009) as well as for 

hide and surfaces washes.  Although phage treatments have been successful in reducing 

O157:H7 population in vivo (Bach et al., 2009) implementation on the farm has not been 

successful due to the cost relative to the producer (Callaway et al., 2008b).  

Sodium chlorate has enzymatic properties that allow for beneficial pre-harvest 

application.  Through the nitrate reductase enzyme, chlorate has the ability to reduce 

nitrate to nitrite.  Nitrite reductase also reduces chlorate to chlorite within the cell 

cytoplasm (Stewart, 1988).  An increase in chlorite concentrations within the cytoplasm 

destroys O157:H7 (Stewart, 1988).   The addition of sodium chlorate to ruminal fluid 

indicated a reduction in O157:H7 concentrations in vitro (Anderson et al., 2000).  Sodium 

chlorate supplementations to water supplies have decreased O157:H7 throughout the GI 

tract in cattle as well as sheep (Anderson et al., 2002; Callaway et al., 2002; Callaway et 

al., 2003).   

Citrus by-products 

The citrus production generates by-products for various food and household 

products, such as pulp and peel that have nutritional value and exhibit antimicrobial 

properties.   Citrus by-products have been added to diets of dairy and beef cattle because 

of palatability, nutritional value and the relative decreased cost (Arthington et al., 2002).  

Citrus by-products are usually supplemented at a rate of 5-15% of the ration (Arthington 

et al., 2002).  Citrus by-products are considered an energy, calcium, dietary fiber, and low 

protein concentrate ingredient, and are fed to cattle in the wet, dry, powdered or pelleted 

form (Arthington et al. 2002).  Citrus by-products are readily available within the citrus-



www.manaraa.com

 

23 

producing regions such as California, Texas and Florida (Callaway et al., 2008a) and can 

be stored and transported long distances (Volanis et al., 2006).  

Research has suggested that citrus by-products display antimicrobial activity 

against foodborne pathogens within the host animal (Dusan et al., 2006; Viuda-Martos et 

al., 2008; Friedly et al., 2009).  Phytochemicals, such as limonene and citrullene are the 

most common and have the greatest microbial activity within citrus by-products (Di 

Pasqua et al., 2006).   These oils are toxic to bacteria by increasing cell membrane 

permeability (Kim et al., 2005; Fisher and Phillips, 2006; Gill and Holley, 2006; Di 

Pasqua et al., 2007).  The lipophilic properties of essential oils are able to permeabilize 

the cell wall and cytoplasmic membranes within gram-negative bacteria (Bakkali et al., 

2006).  The change in the fluidity of the membranes due to the permeabilization, allows 

essential oils to coagulate the cytoplasm (Gustafson et al., 1998), depleting ATP (Di 

Pasqua et al., 2006) and leading to lysis of the cell (Kim et al., 2005; Fisher and Phillips, 

2006; Gill and Holley, 2006; Oussalah et al., 2006; Di Pasqua et al., 2007).   

In vitro studies have suggested that the addition of >1% orange peel and pulp 

reduced O157:H7 and Salmonella typhimurium concentrations within rumen fluid 

(Callaway et al., 2008a).  In vivo research conducted with sheep indicated that when 

feeding a 50/50 ration of orange peel and citrus pellets, the ration reduced inoculated 

O157:H7 and S. typhimurium populations in the rumen (Callaway et al., 2011a; Callaway 

et al., 2011b).  Feeding orange peel and pulp to weanling pigs decreased ileal and cecal 

populations of diarrheagenic E. coli, while completely eliminating concentrations within 

the rectum (Collier et al., 2010).  The in vitro and sheep in vivo data suggest that citrus 

by-products can reduce O157:H7 populations within cattle and sheep, more specifically 

within the rumen.  Even though O157:H7 can reside in the rumen, the intestinal tract is 
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where colonization and shedding occurs (Laven et al., 2003).  If citrus by-products can 

reduce O157:H7 populations within the rumen, it could subsequently reduce populations 

within the intestinal tract.  This could make citrus by-products a dual purpose pre-harvest 

intervention strategy.   

Future of pre-harvest 

There have been numerous developments in pre-harvest intervention techniques.  

These strategies have been implemented on the farm and through the environment.  

Although cases of O157:H7 incidences have decreased, there has not been a strategy that 

has proven to completely eliminate O157:H7.  The main limitation to pre-harvest food 

safety intervention techniques is the inability to successfully track pathogens.  

Biophotonics has been an area that researchers suggest could aid in the knowledge and 

pathogenesis of bacteria.  Biophotonics introduces the idea of bacteria transformed with 

bioluminescent plasmids that can be detected under a specialized camera.  Implementing 

the use of bioluminescence within the live animal model can serve as a research tool for 

comprehending the pathogenesis and physiological systems of healthy or diseased 

animals (Ryan et al., 2011).  One of the main limitations to pre-harvest intervention 

strategies is the inability to recognize and diagnose an individual or a group of cattle that 

are carriers of O157:H7.  Being able to physically track pathogens like O157:H7 will 

help researchers better understand what physiological events occur in vivo, allowing 

researchers to advance pre-harvest pathogen intervention strategies.  Imaging of 

bioluminescent plasmids offers a rather straightforward, strong, lucrative and extremely 

sensitive resource for capturing biological in vivo processes (Dothager et al., 2009). 
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Biophotonics and bioluminescence 

Biophotonics involves the introduction of a vector containing the luxCDABE 

operon, which encodes enzymes responsible for synthesis of the luciferase enzyme and 

the aldehyde substrate (Meighen, 1993) into the bacterial strain of interest.  Biophotonics 

combines the scientific fields of biology, photonics and optical imaging.  

Bioluminescence is the voluntary or involuntary emission of visible light in living 

organisms that is arbitrated to an enzyme catalyst (Meighen, 1993).  An oxidized reaction 

that involves a luciferase enzyme and a substrate is produced and thus emits light (Zhao 

et al., 2004).  Unique to bioluminescent bacteria is the ability to self-synthesize all 

substrates within the bacteria themselves for the production of light (Close et al., 2010).  

In order to generate light, the luciferase protein first binds to the two naturally occurring 

products within the cell; reduced riboflavin phosphate (FMNH2) and oxygen (O2).  After 

the protein binds to each individually, it then binds to the synthesized long chain 

endogenous aliphatic aldehyde, produced by lipid biogenesis.  This permits the lux 

cassette to implement the endogenous materials within the cell to form intermediates, in 

turn oxidizing the intermediates to produce emission of a blue-green light (Meighen, 

1991).  The overall reaction that is observed can be reviewed as:  

FMNH2 + RCHO + O2 → FMH + H2O +RCOOH + hv490nm   (Meighen, 1991) 

The light that is emitted can be detected using an intensified charge-coupled 

device camera (Contag et al., 1995) and this camera can detect as few at 50 colonies 

(Siragusa et al., 1999). 

Bacteria transformed with photonic plasmids that constitutively express of 

luxCDABE operon do not exhibit alterations in growth kinetics (Beyer and Bohm, 1996), 

biochemical mechanisms, serology, or structure in comparison to non-transformed strains 



www.manaraa.com

 

26 

(Chen and Griffiths, 1996).  Bioluminescence from bacterial luciferase also correlates 

well with in vitro enzyme activity, as the amount of luciferase protein and lux mRNA 

generated directly correlates with cell viability (Close et al., 2010; Siragusa et al., 1999) 

bacterial plate counts (Siragusa et al., 1999) and intracellular numbers of bacteria in cell 

culture (Maurer et al., 2000). 

Successful models 

Recent studies have adapted this bioluminescent technology for investigating a 

variety of physiologically relevant systems, including single, living cells (Willard et al., 

1999), whole plants (Anderson et al., 1995), Drosophila (Brandes et al., 1996), and 

rodents (Contag et al., 1995, 1997).   The ability to track bioluminescent pathogens in 

vivo through the GI tract has previously been successful in pigs, mice and fish (Willard et 

al., 2002; Burns-Guydish et al., 2005; Karsi et al., 2006; Moulton et al., 2009a).  

Successful in vivo tracking of Salmonella typhimurium transformed with the pAK1-lux 

bioluminescent plasmid was achieved within the swine (Willard et al., 2002; Moulton et 

al., 2009a) and S. typhimurium and E.coli transformed with various luxCDABE operons 

within the murine (Burns-Guydish et al., 2005; Foucault et al., 2010) GI tract models.  Ex 

vivo tracking of E. coli transformed with Xen-14 plasmid has been successful in the 

bovine (Curbelo et al., 2010) and E. coli+pAK1-lux within the ovine (Moulton et al., 

2009a), gerbils (Disson et al., 2008) and equine reproductive tracts (Ryan et al., 2010). 

Advantages of bioluminescence 

Real-time imaging using these luciferase reporter genes can aid in pre-harvest 

pathogen intervention in vivo by reducing the number of animals used in studies and 

providing answers to the pathogenesis of bacteria (Ryan et al., 2005).  Luciferase reporter 
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genes applied to bioluminescent imaging are used to help monitor real-time physiological 

events related to colonization and pathogenesis of bacterial pathogens (Klerk et al., 2007; 

Luker and Luker, 2008; Ryan, 2011).  Employing bioluminescence in live animal models 

will facilitate tracking of pathogens (Contag et al., 1997) and indicate the physical 

location of pathogens (Siragusa et al., 1999), which will increase researchers’ 

understanding of pathogenic processes (Contag et al., 1995).  Live animal models, which 

include in vivo cellular and molecular imaging, are being implemented through new 

technologies (Contag, 2002).  Although technology like biophotonics does not seem to be 

appropriate for cattle producers or consumer use, it has the ability to help pre-harvest 

researchers in the pathogenic bacteria analysis and mode of action and transmission 

(Moulton et al., 2009a). 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

28 

Literature cited 
 
Ahmad A, Nagaraja TG, Zurek L. Transmission of Escherichia coli O157:H7 to cattle by  
 house flies. Prev Vet Med 2007; 80:74-81. 
 
Alonso G, Vilchez G, Vidal RL. How bacteria protect themselves against channel- 
 forming colicins. Inter Microbiol 2000; 3:81-88. 
 
Armstrong GL, Hollingsworth J, Morris JG. Emerging foodborne pathogens: Escherichia  
 coli O157:H7 as a model of entry of a pathogen into the food supply of the  
 developed world. Epidemiol 1996; 18:24-51. 
 
Anderson RC, Buckley SA, Kubena LF, Stanker LH, Harvey RB, Nisbet DJ. Bactericidal  

effect of sodium chlorate on Escherichia coli O157:H7 and Salmonella 
typhimurium DT104 in rumen contents in vitro. J Food Prot 2000; 63:1038-1042. 

 
Anderson RC, Callaway TR, Anderson TJ, Kubena LF, Keith NK, Nisbet DJ. 
 Bactericidal effect of sodium chlorate on Escherichia coli concentrations in 
 bovine ruminal and fecal contents in vivo. Microb Ecol Health Dis 2002; 14:24-
 29. 
 
Anderson SL, SA Kay. Functional dissection of circadian clock- and phy- tochrome 
 regulated transcription of the Arabidopsis CAB2 gene. Proc Natl Acad Sci USA  

1995; 92:1500-1504. 
 
Angert E. Alternatives to binary fission in bacteria. Nature Rev 2005; 3:214-224. 
 
Arthington JD, Kunkle WE, Martin AM. Citrus pulp for cattle. 2002; p.317-328. In G.  

Rogers, and M. Poore (ed.), The Veterinary Clinics of North America-Food 
Animal Practice, WB Saunders Company, Philadelphia, PA.  

 
Arthur TM, Barkocy-Gallagher GA, Rivera-Betancourt M, Koohmaraie M. Prevalence 
 and characterization of non-O157 shiga toxin-producing Escherichia coli on 
 carcasses in commercial beef cattle processing plants. Appl Environ Microbiol 
 2002; 68:4847-4852.  
 
Arthur TM, Bosilevac JM, Brichta-Harhay DM, Guerini MN, Kalchayanand N, King 
 DA, Shackelford SD, Wheeler TL, Koohmaraie M. Transportation and lairage 
 environment effects on prevalence, numbers, and diversity of Escherichia coli 
 O157:H7 on hides and carcasses of beef cattle at processing.  J Food Prot 2007; 
 70:280-286. 

 

 



www.manaraa.com

 

29 

Arthur TM, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, Shackelford SD, 
 Wheeler TL, Koohmaraie M.  Source tracking of Escherichia coli O157:H7 and 
 Salmonella contamination in the lairage environment at commercial U.S. beef 
 processing plants and identification of an effective intervention.  J Food Prot 
 2008; 71:1752-1760. 
 
Arthur TM, Keen JE, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, Shackelford  
 SD, Wheeler TL, Nou X, Koohmaraie M. Longitudinal study of Escherichia coli 
 O157:H7 in a beef cattle feedlot and role of high-level shedders in hide 
 contamination.  Appl Environ Microbiol 2009; 75:6515-6523. 
 
Bach SJ, McAllister YA, Veira DM, Gannon VPJ, Holley RA. Effect of bacteriophage 
 DC22 on Escherichia coli O157:H7 in an artificial rumen system (RUSITEC) and 
 inoculated sheep. Amin Res 2003; 52:89-101. 
 
Bach SJ, Johnson RP, Stanford K, McAllister TA. Bacteriophages reduce Escherichia 
 coli O157:H7 levels in experimentally inoculated sheep. Can J Anim Sci 2009; 
 89:285-293.  
 
Bacon RT, Belk KE, Sofos JN, Clayton RP, Reagan JO, Smith GC. Microbial 
 populations on animal hides and beef carcasses at different stages of slaughter in 
 plants employing multiple-sequential interventions for decontamination.  J Food 
 Prot 2000; 63:1080-1086. 
 
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils-a 
 review. Food and Chem Tox 2006; 46:446-475. 
 
Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, 
 Wheeler TL, Koohmaraie M. Seasonal prevalence of shiga toxin-producing 
 Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in 
 commercial beef processing plants. J Food Prot 2003; 66:1978-1986. 
 
Baranyi, J. Stochastic modelling of bacterial lag phase. Int J Food Micro 2002; 73:203-
 206.  
 
Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, 
 Beauchemin KA. A review of plant-derived essential oils in ruminant nutrition 
 and production. Anim Feed Sci Technol 2008; 145:209-228. 
 
Besser RE, Griffin PM, Slutsker L. Escherichia coli O157:H7 gastroenteritis and the 
  hemolytic uremic syndrome, an emerging infectious disease. Ann Rev Med 1999; 
 50:355-367.  
 



www.manaraa.com

 

30 

Beutin L, Akeksic S, Zimmerman S, Gleier K. Virulence factors and phenotypical traits 
 of verotoxigenic strains of Escherichia coli isolated from human patients in 
 Germany. Med Microbiol Immunol (Berl) 1994; 183:13-21. 
 
Beutin L, Geier D, Zimmermann S, Aleksic S, Gillespie HA, Whittam TS.
 Epidemiological relatedness and clonal types of natural population of Escherichia 
 coli strains producing  shiga toxins in separate populations of cattle and sheep. 
 Appl Environ Microbiol 1997; 63:2175-2180. 
 
Beyer W, Böhm R.  Labeling Salmonella live vaccine strains with the lux operon from 
 Vibrio  fisheri improves their detection and decimation from wild type. 
 Microbiol Res 1996; 151:407-419. 
 
Bomba A, Nemcova R, Mudronova D, Guba P. The possibilities of potentiating the 
 efficacy of probiotics. Trends Food Sci Technol 2002; 13:121-126. 
 
Bosilevac JM, Shackelford SD, Brichta DM, Koohmaraie M. Efficacy of ozonated and 
 electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. J 
  Food Prot 2005; 68:1393-1398. 
 
Brackett RE. Incidence, contributing factors, and control of bacterial pathogens in 
 produce. Postharvest Bio Tech 1999; 15:305-311.  
 
Brandes C, Plautz JD, Stanewsky R, Jamison CF, Straume M, Wood KV, Kay SA, Hall 
 JC.  Novel features of drosophila period transcription revealed by real-time 
 luciferase reporting. Neuron 1996;16:687-692. 
 
Brashears MM, Galyean ML. Testing of probiotic bacteria for the elimination of 
 Escherichia coli O157:H7 in cattle. Available at:  
 http://www.amif.org/PRProbiotics042302.htm.  Accessed Jan 2, 2012. 
 
Burns-Guydish SM, Olomu IN, Zhao H, Wong RJ, Stevenson DK, Contag CH. 
 Monitoring age-related susceptibility of young mice to oral Salmonella enteric 
 Serovar typhimurium  infection using in vivo murine model. Pediatr Res 2005; 
 58:153-158. 
 
Callaway TR, Anderson RC, Genovese KJ, Poole TL, Anderson TJ, Byrd JA, Kubena  
 LF, Nisbet DJ. Sodium chlorate supplementation reduces E. coli O157:H7 
 populations in cattle.  J Anim Sci 2002; 80:1683-1689. 
 
Callaway TR, Edrington TS, Anderson RC, Genovese KJ, Poole TL, Elder RO, Byrd JA, 
 Bischoff KM, Nisbet DJ. Escherichia coli O157:H7 populations in sheep can be 
 reduced by chlorate supplementation. J Food Prot 2003; 66:194-199. 
 

http://www.amif.org/PRProbiotics042302.htm


www.manaraa.com

 

31 

Callaway TR, Stahl CH, Edrington TS, Genovese KJ, Lincoln LM, Anderson RC
 Lonergan SM, Poole TL, Harvey RB, Nisbet DJ. Colicin concentrations inhibit 
 growth of Escherichia coli O157:H7 in vitro. J Food Prot 2004; 67:2603-2607. 
 
Callaway TR, Edrington TS, Brabban AD, Keen JE, Anderson RC, Rossman ML, Engler 
 MJ,Genovese KJ, Gwartney BL, Reagan JO, Poole TL, Harvey RB, Kutter EM, 
 Nisbet  DJ. Fecal prevalence of Escherichia coli O157, Salmonella, Listeria, and 
 bacteriophage  infecting E. coli O157:H7 in feedlot cattle in the southern plains 
 region of the United States. Foodborne Pathog Dis 2006; 3:234-244. 
 
Callaway TR, Carroll JA, Arthington JD, Pratt C, Edrington TS, Anderson RC, Galyean  
 ML, Ricke SC, Crandall P, Nisbet DJ. Citrus products decrease growth of E. coli 
 O157:H7 and Salmonella typhimurium in pure culture and in fermentation with 
 mixed  ruminal microorganisms in vitro. Foodborne Path Dis 2008a; 5:621-627. 
 
Callaway TR, Edrington TS, Brabban AD, Anderson RC, Rossman ML, Engler MJ, Carr 
 MA, Genovese KJ, Keen JE, Looper ML, Kutter EM, Nisbet DJ. Bacteriophage 
 isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in 
 ruminant gastrointestinal tracts. Foodborne Path Dis 2008b; 5:183-192. 
 
Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ. Diet, Escherichia coli 
 O157:H7, and cattle: a review after 10 years. Curr Issues Mol Biol 2009; 11:67-
 80.  
 
Callaway TR. Pre-harvest control of E. coli O157:H7. In the National Cattlemen’s Beef 
 Association Beef Research and Knowledge Management Proceedings. 2010; 
 Centennial CO. 
 http://www.beefresearch.org/CMDocs/BeefResearch/Safety/WhitePaper_proof8.p
 df.          
 
Callaway TR, Carroll JA, Arthington JD, Edrington TS, Rossman ML, Carr MA, Krueger 
 MA, Ricke NA, Crandall SC, Nisbet DJ. Escherichia coli O157:H7 populations in 
 ruminants can be reduced by orange peel product feeding. J Food Prot 2011a; 
 74:1917-1921.  
 
Callaway TR, Carroll JA, Arthington JD, Edrington TS, Rossman ML, Carr ML, 
 Genovese KJ,  Ricke SC, Crandall SC, Nisbet DJ. Orange peel pellets can reduce  
 Salmonella populations in ruminants. Foodborne Path Dis 2011b; 8:1071-1075. 
 
CDC. 2011 Estimates of Foodborne Illnesses in the United States. Accessed December 
 23, 2011. 
 http://www.cdc.gov/nczved/divisions/dfbmd/diseases/ecoli_o157h7/#how_comm
 on.     
 



www.manaraa.com

 

32 

Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson 
 AB, Grissom GE, Laux DC, Cohen PS, Conway T. Carbon nutrition of 
 Escherichia coli in the mouse intestine.  Proc Natl Acad Sci USA 2004; 
 101:7427-7432. 
 
Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M. Super-shedding and the   

link between human infection and livestock carriage of Escherichia coli O157. 
Nat Rev Microbiol 2008; 6:904-912. 

 
Chen J, Griffith MW.  Salmonella Detection in Eggs Using Lux+ Bacteriophages. J Food 
 Prot 1996; 59:908-914. 
 
Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS. Autonomous 
 bioluminescent expression of the bacterial luciferase gene cassette (lux) in a 
 mammalian cell line. PLoS ONE 2010; 5: e12441. 
 
Collier CT, Carroll JA, Callaway TR, Arthington JD. Oral administration of citrus pulp 
 reduces recovery of orally dosed Escherichia coli F18 in weaned pigs. J Anim Vet 
 Adv 2010; 9:2140-2145. 
 
Collins DM, Gibson GR. Probiotics, prebiotics, and synbiotics: approaches for 
 modulating the microbial ecology of the gut. Amer J Clin Nutr 1999; 69:1052S-
 1057S. 
 
Collis VJ, Reid CA, Hutchinson MJ, Davies MH, Wheeler PA, Small A, Buncic S. 
 Spread of marker bacteria from the hides of cattle in a simulated livestock market 
 and at an abattoir. J Food Prot 2004; 67:2397-2402. 
 
Contag CH, Contag PR, Mullins JI, Spillman SD, Stevenson DK, Benaron DA. Photonic 
 detection of bacterial pathogens in living hosts. Mol Microbiol 1995; 18:593-603. 
 
Contag CH, Spillman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, 
 Benaron DA. Visualizing gene expression in living mammals using a 
 bioluminescent reporter. Photchem Pathobiol 1997; 66:523-531. 
 
Contag PR. Whole-animal cellular and molecular imaging to accelerate drug 
 development. Drug Discov Today 2002; 7:555-562. 
 
Cornick NA, Booher SL, Moon HW. Intimin facilitates colonization by E. coli O157:H7 
 in adult ruminants. Infect Immun 2002; 70:2704-2707. 
 
Cuesta Alonso EP, Gilliland SE, Krehbiel CR. Incidence and toxin production ability of 
 Escherichia coli O157:H7 isolated from cattle trucks. J Food Prot 2007; 70:2383-
 2385. 
 



www.manaraa.com

 

33 

Curbelo J, Moulton K, Willard S. Photonic characteristics and ex vivo imaging of 
 Escherichia coli-Xen14 within the bovine reproductive tract. Therio 2010; 73:48-
 55.  
 
Cutler SA, Lonergan SM, Cornick N, Johnson AK, Stahl CH. Dietary inclusion of colicin 
 E1 is effective in preventing postweaning diarrhea by F18-positive Escherichia 
 coli in pigs. Antimicrob Ag Chemother 2007; 51:3830-3835. 
 
Dargatz DA, Wells SJ, Thomas LA, Hancock DD, Garber LP. Factors associated with the 
 presence of Escherichia coli O157 in feces of feedlot cattle. J Food Prot 1997; 
 60:466-470. 
 
Davis MA. Comparison of cultures from rectoanal-junction mucosal swabs and feces for 
 detection of Escherichia coli O157 in dairy heifers. Appl Environ Microbiol 
  2006; 72:3766-3770. 
 
Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O’Brien AD. Vaccination of 
 pregnant dams with intimin (O157) protects suckling piglets from E. coli 
 O157:H7 infection. Infect Immun 2002; 70:2414-2418. 
 
Delpy LP, Beranger G, Kaweh M. Bacterial growth phases. Ann Inst Pasteur (Paris) 
 1956; 91:112-115. 
 
DeVinney R, Stein M, Reinscheild D, Abe A, Ruschkowski S, Finlay BB. 
 Enterohemorrhagic E. coli O157:H7 produces Tir, which is translocated to the 
 host cell membrane but is not tyrosine phosphorylated. Infect Immun 1999; 
 7:2389-2398. 
 
Dewell GA, Ransom JR, Dewell RD, McCurdy K, Gardner IA, Hill AE, Sofos JN, Belk 
 KE, Smith GC, Salman MD. Prevalence of and risk factors for Escherichia coli 
 O157 in market-ready beef cattle from 12 US feedlots. Foodborne Path Dis 2005; 
 2:70-76. 
 
Diez-Gonzalez F, Callaway TR, Kizoulis MG, Russell JB. Grain feeding and the 
 dissemination  of acid-resistant Escherichia coli from cattle. Science 1998; 
 281:1666-1668. 
 
Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids 
 composition of microbial cells induced by addition of thymol, carvacrol, 
 limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food 
 Chem 2006; 54:2745-2749. 
 
Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane 
 toxicity and antimicrobial compounds from essential oils. J Agric Food Chem 
 2007; 55:4863-4870. 



www.manaraa.com

 

34 

Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, Ragon M, Le 
 Monnier A, Babinet C, Cossart P, Lecuit M. Conjugated action of two species-
 specific invasion proteins for feto-placental listeriosis. Nature 2008; 455:1114-
 1118. 
 
Donachie WD. Co-ordinate regulation of the Escherichia coli cell cycle or the cloud of 
 unknowing. Mol Microbiol 2001; 40:779-785.  
 
Donnenberg MS, Tzipori S, McKee ML, O’Brien AD, Alroy J, Kaper JB.  The role of the 
 eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro 
  and in a porcine model. J Clin Invest 1993; 92:1418-1424. 
 
Donnenberg MS, Kaper JB, Finlay BB. Interactions between enteropathogenic 
 Escherichia coli and host epithelial cells. Trends Microbiol 1997; 5:109-114.  
 
Dorn CR, Scotland SM, Smith HR, Willshaw GA, Rowe B. Properties of verocytotoxin-
 producing Escherichia coli of human and animal origin belonging to serotypes 
 other than O157:H7. Epidemiol Infect 1989; 103:83-95. 
 
Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D. Advances 
  in bioluminescent imaging of live animal models. Curr Opinion Biotech 2009; 
 20:45-53.  
 
Doyle MP. Escherichia coli O157:H7 and its significance in foods. Int J Food Microbiol 
 1991; 12:289-302. 
 
Dusan F, Marian S, Katarina D, Dobroslava B. Essential oils-their antimicrobial activity 
 against Escherichia coli and effect on intestinal cell viability. Toxicol in Vitro 
 2006; 20:1435-1445. 
 
Edrington TS, Callaway TR, Ives SE, Engler MJ, Looper ML, Anderson RC, Nisbet DJ.   
 Seasonal shedding of Escherichia coli O157:H7 in ruminants: a new hypothesis.  
 Foodborne Pathog Dis 2006; 3:413-421. 
 
Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraire M, Laegreid  
 WW.  Correlation of enterohaemorrhagic Escherichia coli O157 prevalence in 
 faeces,  hides and carcasses of beef cattle during processing.  Proc Natl Acad Sci 
 USA 2000; 97:2999-3003. 
 
Elder RO, Keen JE, Wittum TE, Callaway TR, Edrington TS, Anderson RC, Nisbet DJ. 
 Intervention to reduce fecal shedding of enterohemorrhagic Escherichia coli 
 O157:H7 in naturally infected cattle using neomycin sulfate. J Anim Sci 2002; 
 80(Suppl 1):15(Abstr.).  
 



www.manaraa.com

 

35 

Enss ML, Muller H, Schmidt-Wittig U, Kownatzki R, Coenen M, Hedrich HJ. Effects of  
 perorally applied endotoxin on colonic mucins of germfree rats. Scand J 
 Gastroenterol  1996; 31:868-874. 
 
FDA, 2004. Food and Drug Administration of the US, 21 CFR 184. Accessed Jan 17, 
 2012.  http://www.cfsan.fda.gov/eafus.html.   
 
Fisher K, Phillips CA. The effect of lemon, orange and bergamot essential oils and their 
 components on the survival of Campylobacter jejuni, Escherichia coli O157, 
 Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and 
 in food systems. J Appl Microbiol  2006; 101:1232-1240.  
 
Foucault ML, Thomas L, Goussard S, Branchini BR, Grillot-Courvalin C.  In vivo 
 bioluminescence imaging for the study of intestinal colonization by Escherichia 
 coli in mice. Appl Eviron Microbiol 2010; 76:264-274. 
 
Fox JT, Depenbusch BE, Drouillard JS, Nagaraja TG. Dry-rolled or steam-flaked grain-
 based diets and fecal shedding of Escherichia coli O157 in feedlot cattle. J Anim 
 Sci 2007; 85:1207-1212. 
 
Fox JT, Drouillard JS, Shi X, Nagaraja TG. Effects of mucin and its carbohydrate 
 constituents on Escherichia coli O157 growth in batch culture fermentations 
  with ruminal or fecal microbial inoculum. J Anim Sci 2009; 87:1304-1313. 
 
Francis DH, Collins JE, Duimstra JR.  Infection of gnotobiotics pigs with an Escherichia 
 coli O157:H7 strain associated with an outbreak of hemorrhagic colitis. Infect 
 Immun 1986; 51:953-956.  
 
Franz E, van Diepeningen AD, de Vos OJ, van Bruggen AHC. Effects of cattle feeding 
 regimen and soil management type on the fate of Escherichia coli O157:H7 and 
 Salmonella enteric serovar Typhimurium in manure, manure-amended soil, and 
 lettuce. Appl Environ Microbiol 2005; 71:6165-6174.    
 
French E, Rodriguez –Palacios A, LeJeune JT. Enteric bacterial pathogens with zoonotic 
 potential isolated from farm-raised deer. Foodborne Path Dis 2010; 7:1031-1037.  
 
Frenzen PD, Drake A, Angulo FJ, The emerging infections program foodnet working 
 group.  Economic cost of illness due to Escherichia coli O157 infections in the 
 United States. J Food Prot 2005; 68:2623-2630. 
 
Friedly EC, Crandall PG, Ricke SC, Roman M, O’Bryan CA, Chalova VI. In vitro anti-
 listerial effects of citrus oil fractions in combination with organic acids. J Food 
 Sci 2009; 74:M67-M72.  
 

http://www.cfsan.fda.gov/eafus.html


www.manaraa.com

 

36 

Garber LP, Wells SJ, Hancock DD, Doyle MP, Tuttle J, Shere JA, Zhao T. Risk factors 
 for fecal shedding of Escherichia coli O157:H7 in dairy calves. J Amer Vet Med 
 Assoc 1995; 207:46-49. 
 
Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes, and 
 Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food 
 Microbiol 2006; 108:1-9. 
 
Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli 
 O157:H7, other enterohemorrhagic E. coli and the associated hemolytic uremic 
 syndrome. Epidemiol Rev 1991; 13:60-98. 
 
Grauke LJ, Kudva IT, Yoon JW, Hunt CW, Williams CJ, Hovde CJ. Gastrointestinal 
  tract location of Escherichia coli O157:H7 in ruminants. Appli Environ 
 Microbiol 2002; 68:2269-2277. 
 
Greenquist MA, Drouillard JS, Sargeant JM, Depenbusch BE, Shi X, Lechtenberg KF, 
 Nagaraja TG. Comparison of rectoanal mucosal swab cultures and fecal cultures 
 for determining prevalence of Escherichia coli O157:H7 in feedlot cattle. Appl 
 Environ Microbiol 2005; 71:6431-6433. 
 
Guarner F, Malagelada JR. Gut flora in health and disease. The Lancet 2003; 361:512-
 519. 
 
Gunn GJ, McKendrick IJ, Ternent HE, Thomson-Carter F, Foster G, Synge BA. An 
 investigation of factors associated with the prevalence of verocytotoxin producing 
 Escherichia coli O157 shedding in Scottish beef cattle. Vet J 2007; 174:554-564.   
 
Gustafson JE, Liew YC, Chew S, Markham JK, Bell HC, Wyllie SG, Warmington JR. 
 Effects of tea oil on Escherichia coli. Lett Appl Microbiol 1998; 26:194-198. 
 
Herriot t DE, Hancock DD, Ebel ED, Carpenter LV, Rice DH, Besser TE. Association of 
 herd management factors with colonization of dairy cattle by shiga toxin-positive 
 Escherichia coli O157. J Food Prot 1998; 61:802-807. 
 
Hilborn, ED, Mermin JH, Mshar PA, Hadler JL, Voetsch A, Wojtkunski CW, Swartz M, 
 Mshar  R, Lambert-Fair MA, Farrar JA, Glynn MK, Slutsker L. A multistate 
 outbreak of Escherichia coli O157:H7 infections associated with consumption of 
 mesclun lettuce. Arch Intern Med 1999; 159:1758-1764. 
 
Hoey ED, Currie C, Else RW, Nutikka A, Lingwood CA, Gally DL, Smith DGE. 
 Expression of receptor for verotoxins 1 from Escherichia coli O157 on bovine 
 intestinal epithelium.  J Med Microbiol 2002; 51:143-149. 
 



www.manaraa.com

 

37 

Hudault S, Guignot J, Servin AL. Escherichia coli strains colonizing the gastrointestinal 
 tract protect germfree mice against Salmonella typhimurium infection. Gut 2000; 
 49:47-55.  
 
Hussein HS, Sakuma T. Prevalence of shiga toxin-producing Escherichia coli in dairy 
 cattle and their products. J Dairy Sci 2005; 88:450-465.      
 
Hussein HS. Prevalence and pathogenicity of shiga toxin-producing Escherichia coli in 
 beef cattle and their products. J Anim Sci 2006; 85:E63-E72. 
 
Jacob ME, Fox JT, Drouillard JS, Renter DG, Nagaraja TG. Effects of dried distillers’ 
 grain on fecal prevalence and growth of Escherichia coli O157 in batch culture 
 fermentations  from cattle. Appl Environ Microbiol 2008; 74:38-43. 
 
Jensen PR, Hammer K. Minimal requirements for exponential growth of Lactococcus 
 lactis. Appl Eviron Microbiol 1993; 59:4363-4366. 
 
Johansen M, Andersen LO, Thomsen LK, Busch ME, Wachmann H, Jorsal SE, Gyles 
 CL. Prevention of edema disease in pigs by passive immunization. Can J Vet Res 
 2000; 64:9-14. 
 
Johnson, JR. Virulence factors in Escherichia coli urinary tract infection.  Clin Mircobiol 
 Rev 1991; 4:80-128.  
 
Jordan D, McEwen SA. Effect of duration of fasting and a short-term high-roughage 
 ration on the concentration of Escherichia coli biotype 1 in cattle feces. J Food 
 Prot 1998; 61:531-534. 
 
Kaper JB, O’Brien AD. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. 
 coli Strains. Washington, DC: ASM Press; 1998.  
 
Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nature Rev Microbiol 
 2004; 2:123-140. 
 
Karsi A, Menanteau-Ledouble S, Lawrence ML. Development of luminescent 
 Edwardsiella ictaluri for non-invasive disease monitoring. FEMS Microbiol Lett 
  2006; 260:216-223. 
 
Kay S. E. coli O157:H7: The cost during the last 10 years. Meat and Poultry News 2003;  
 3:26-34.  
 
Keen JE, Elder RO. Isolation of shiga-toxigenic Escherichia coli O157 from hide 
 surfaces and the oral cavity of finished beef feedlot cattle.  J Am Vet Med Assoc 
 2002; 220:756-763. 
 



www.manaraa.com

 

38 

Kenny B, DeVinney R, Stein M, Reinscheild DJ, Frey EA, Finlay BB. Enteropathogenic 
 E.coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. 
 Cell 1997; 91:511-520. 
 
Kim J, Marshall MR, Wei CI. Antimicrobial activity of some essential oil components 
 against five foodborne pathogens. J Agric Food Chem 1995; 43:2839-2845. 
 
Klerk CPW, Overmeer RM, Niers TMH, Versteeg HH, Richel DJ, Buckle T, Van 
 Noorden CJF,  Van Tellingen O. Validity of bioluminescence measurements for 
 noninvasive in vivo imaging of tumor load in small animals. Biotechniques 2007; 
  43(Supple.):7-13. 
 
Kolter R, Siegele DA, Tormo A. That stationary phase of the bacterial life cycle. Ann 
 Rev Microbiol 1993; 47: 855-874. 
 
Konisky J. Colicins and other bacteriocins with established modes of action. Ann Rev 
 Microbiol 1982; 36:125-144. 
 
Koohmaraie M, Arthur TM, Bosilevac JM, Guerini M, Shackelford SD, Wheeler TL. 
 Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Sci 2005; 
 71:79-91. 
 
Lahti E, Eklund M, Ruutu P, Siitonrn A, Rantala L, Nuorti P, Honkanen-Buzalski T. Use 
 of phenotyping and genotyping to verify transmission of Escherichia coli 
 O157:H7 from dairy farms. Eur J Clin Microbiol Infect Dis 2002; 21:189-195. 
 
Laven RA, Ashmore A, Stewart CS. Escherichia coli in the rumen and colon of slaughter 
 cattle, with particular reference to E. coli O157. Vet J 2003; 165:78-83.  
 
LeJeune JT, Besser TE, Hancock DD. Cattle water troughs as reservoirs of Escherichia 
 coli O157. Appl Environ Microbiol 2001; 67:3053-3057.  
 
 
LeJeune JT, Besser TE, Rice DH, Berg JL, Stilborn RP, Hancock DD. Longitudinal study 
 of fecal shedding of Escherichia coli O157:H7 in feedlot cattle: predominance 
 and persistence of specific clonal types despite massive cattle population 
 turnover.  Appl Environ Microbiol 2004; 70:377-384. 
 
Leomil L, Aidar-Ugrinovich L, Guth BEC, Irino K, Vettorati MP, Onuma DL, de Castro 
 AFP. Frequency of shiga toxin-producing Escherichia coli (STEC) isolates 
 among diarrheic and non-diarrheic calves in Brazil. Vet Microbiol 2003; 97:103-
 109.  
 
  



www.manaraa.com

 

39 

Levine MM, Nalin DR, Hornick RB, Bergquist EJ, Waterman DH, Young CR, Sotman S, 
 Rowe B. Escherichia coli strains that cause diarrhea but do not produce heat-
 liable or heat-stable enterotoxins and are non-invasive. The Lancet 1978; 1:1119-
 1122. 
 
Levine MM, Edelman R. Enteropathogenic Escherichia coli of classic serotypes 
 associated with infant diarrhea: epidemiology and pathogenesis. Epidemiol Rev 
 1984; 6:31-51. 
 
Levine, MM. Escherichia coli that causes diarrhea: enterotoxigenic, enteropathogenic,  
 enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis 1987; 
 155:377-389. 
 
Lim JY, Li J, Sheng H, Besser TE, Potter K, Hovde CJ. Escherichia coli O157:H7  
 colonization at the rectoanal junction of long-duration culture-positive cattle. 
 Appl Environ Microbiol 2007; 73:1380-1382. 
 
Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL, Read RJ. 
 Structure of the shiga-like toxin I B-Pentamer complex with an analogue of its 
 receptor Gb3. Biochemistry 1998; 37:1777-1788. 
 
Low JC, McKendrick IJ, McKechnie C, Fenlon D, Naylor SW, Currie C, Smith DGE, 
 Allison L, Gally DL. Rectal carriage of enterohemorrhagic Escherichia coli O157  
 in slaughtered cattle. Appl Environ Microbiol 2005; 71:93-97.  
 
Ludwig K, Bitzan M, Zimmerman S, KlothM,Ruder H, Muller-Wiefel DE. Immune 
 response to non-O157 verotoxin-producing Escherichia coli in patients with 
 hemolytic uremic syndrome. J Infect Dis 1996; 174:1028-1039. 
 
Luker KE, Luker GD. Applications of bioluminescence imaging to antiviral research and 
 therapy: Multiple luciferase enzymes and quantization. Antiviral Res 2008; 
 78:179-187. 
 
Maurer HH, Bickeboeller-Friedrich J, Kraemer T, Peters FT. Toxicokinetics and 
 analytical toxicology of amphetamine-derived designed drugs (‘Ecstasy’). 
 Toxicology Letters 2000; 112-13:133-142. 
 
Mather AE, Innocent GT, McEwen SA, Reilly WJ, Taylor DJ, Steele WB, Gunn GJ, 
 Ternent HE, Reid SWJ, Mellor DJ. Risk factors for hide contamination of 
 Scottish cattle  at slaughter with Escherichia coli O157. Prev Vet Med 2007; 
 80:257-270. 
 
Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E, Elion J. Highly 
 variable mutation rates in commensal and pathogenic Escherichia coli. Science 
 1997; 277:1833-1834. 



www.manaraa.com

 

40 

Maule, A. Survival of veroctyotoxigenic Escherichia coli O157 in soil, water and on 
 surfaces. J Appl Microbiol 2000; 29:71S-78S. 
 
McNeilly TN, Mitchell MC, Rosser T, McAteer S, Low JC, Smith DGE, Huntley JF, 
 Mahajan A, Gally DL. Immunization of cattle with a combination of purified 
 intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli 
 O157:H7 following oral challenge. Vaccine 2010; 28:1422-1428. 
 
Meighen EA. Molecular biology of bacterial bioluminescence. Microbiol Rev 1991; 
 55:123-142. 
 
Meighen EA. Bacterial bioluminescence: organization, regulation, and application of the 
 lux genes. The FASEB Journal 1993; 7:1016-1022. 
 
Meyer-Broseta S, Bastian SN, Arne PD, Cerf O, Sanaa M. Review of epidemiological 
 surveys on the prevalence of contamination of healthy cattle with Escherichia coli 
 serogroup O157:H7. Int J Hgy Environ Health 2001; 203:347-361. 
 
Midgley J, Desmarchelier P. Pre-slaughter handling of cattle and shiga toxin-producing 
 Escherichia coli (STEC).  Lett Appl Microbiol 2001; 32:307-311.  
 
Min BR, Pinchak WE, Anderson RC, Callaway TR. Effect of tannins on the in vitro 
 growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia 
  coli excreted from steers.  J Food Prot 2007; 70:543-550. 
 
Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE, Allen JH, Stevenson SJ, 
 Laux DC, Cohen PS. Glycolytic and gluconeogenic growth of Escherichia coli 
 O157:H7 (EDL933) in the mouse intestine.  Infect Immun 2004; 73:1666-1676. 
 
Moseley SL, Huq I, Alim ARMA, So M, Samadpour-Motalebi M, Falkow S. Detection 
 of enterotoxigenic Escherichia coli by DNA colony hybridization. J Infect Dis 
 1980; 142:892-898. 
 
Moulton K, Ryan P, Lay D, Willard S. Postmortem photonic imaging of lux-modified 
 Salmonella typhimurium within the gastrointestinal tract of swine following oral 
 inoculation in vivo. J Anim Sci 2009a; 87: 2239-2244. 
 
Moulton K, Ryan P, Christiansen D, Hopper R, Klausner C, Bennett W, Rodta-Palenik, 
 Willard ST. Ex Vivo bioluminescence imaging of late gestation ewes following 
 intrauterine inoculation with lux-modified Escherichia coli. Comp Immunol 
 Microbiol Infect Dis 2009b; 32:429-438. 
 
Murinda SE, Liu SM, Roberts RF, Wilson RA. Colicinogeny among Escherichia coli 
 serotypes, including O157:H7 representing four closely related diarrheagenic 
 clones.  J Food Prot 1998; 61:1431-1438.  



www.manaraa.com

 

41 

Nagy B, Fekete PZ. Enterotoxigenic E.coli (ETEC) in farm animals. Vet Res 1999; 
 30:259-284. 
 
Nandiwada LS, Schamberger GP, Schafer HW, Diez-Gonzales F. Characterization of an 
 E2-type colicin and its application to treat alfalfa seeds to reduce Escherichia coli 
 O157:H7. Int J Food Microbiol 2004; 93:267-279. 
 
Nataro J, Yikang D, Cookson S, et al. Heterogeneity of enteroaggregative Escherichia 
 coli virulence demonstrated in volunteers. J Infect Dis 1995; 171:465-468. 
 
Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, 
 Smith DGE, Gally DL. Lymphoid follicle-dense mucosa at the terminal rectum is 
 the principal site of colonization of enterohemorrhagic Escherichia coli 
 O157:H7 in the bovine host. Infect Immun 2003; 71:1505-1512.  
 
Nou X, Rivera-Betancourt M, Bosilevac JM, Wheeler TL, Shackelford SD, Gwarty BL, 
 Reagan JO, Koohmaraie M. Effect of chemical dehairing on the prevalence of 
 Escherichia coli O157:H7 and the levels of aerobic bacteria and 
 Enterobacteriaceae on carcasses in a commercial beef processing plant. J Food 
 Prot 2003; 66:2005-2009. 
 
Nurmi E, Nuotio L, Schncitz C. The competitive exclusion concept: development and 
  future. Int J Food Microbiol 1992; 15:237-240. 
 
O’Brien AD, Holmes RK. Shiga and shiga-like toxins. Microbiol Rev1987; 51:206-220.  
 
Ohya T, Akiba M, Ito H. Use of a trial probiotic product in calves experimentally 
 infected with Escherichia coli O157. Japan Agric Res Quart 2001; 35:189-194.  
 
Omisakin F, MacRae M Ogden ID, Strachan NJC. Concentration and prevalence of 
 Escherichia coli O157 in cattle feces at slaughter.  Appl Environ Mircobiol 2003; 
 69:2444-2447. 
 
Oussalah M, Caillet S, Lacroix M. Mechanisms of action of Spanish oregano, Chinese 
  cinnamon, and savory essential oils against cell membranes and walls of 
 Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 2006; 
 69:1046-1055. 
 
Paddock Z, Shi X, Bai J, Nagaraja TG. Applicability of a multiplex PCR to detect O26, 
 O45, O111, O121, O145, and O157 serogroups of Escherichia coli in cattle feces. 
 Vet Microbiol 2011. 
 
Paton JC, Paton AW. Pathogenesis and diagnosis of shiga toxin-producing Escherichia 
 coli infections. Clin Microbiol Rev 1998; 11:450-479. 
 



www.manaraa.com

 

42 

Peekhaus N, Conway T. What’s for dinner? Entner-Doudoroff metabolism in Escherichia 
 coli.  J Bacteriol 1998; 180:3495-3502 
 
Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson GE, Hinkley S, 
 Klopfenstein TJ, Moxley RA, Smith DT, Finlay BB. Decreased shedding of 
 Escherichia coli O157:H7 by cattle following vaccination with type III secreted 
 proteins. Vaccine 2004; 22:362-369. 
 
Pruimboom-Brees IM, Morgan TW, Ackermann MR, Nystrom ED, Samuel JE, Cornick 
 NA, Moon HW. Cattle lack vascular receptors for Escherichia coli O157:H7 
 shiga toxins. PNAS 2000; 97:10325-10329. 
 
Pupo GM, Karaolis DK, Lan R, Reeves PR. Evolutionary relationships among 
 pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus 
 enzyme electrophoresis and mdh sequence studies. Infect Immun 1997; 65:2685-
 2692. 
 
Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. Epidemiology of 
 Escherichia coli O157:H7 outbreaks, United States, 1982-2002.  Emerg Infect Dis 
  2005; 11:603-609.  
 
Ray DE, Schaffer HD. E. coli again: A troubling new twist with serious consequences. 
 Agricultural Policy Analysis Center, University of Tennessee, Knoxville, TN. 
 Accessed 2 Feb 2012. http://www.agpolicy.org/weekcol/567.html     
 
Reicks AL, Brashears MM, Adams KD, Brooks JC, Blanton JR, Miller MF. Impact of 
 transportation of feedlot cattle to the harvest facility on the prevalence of 
 Escherichia coli O157:H7, Salmonella, and total aerobic microorganisms on 
 hides. J Food Prot 2007; 70:17-21. 
 
Reid G, Howard J, Gan BS. Can bacterial interference prevent infection? Trends in 
 Micobiology 2001; 9:424-428.  
 
Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon ATR. Non-pathogenic 
 Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a 
 randomized trial.  The Lancet 1999; 354:635-639. 
 
Resta-Lenert S, Barrett KE. Modulation of tight junction structure by enteroinvasive 
 E.coli (EIEC) is prevented by H2O2 scavengers and protein kinase C (PKC) 
 inhibitors. Gastroenterology 2001;120:3802. 
 
Resta-Lenert S, Barrett KE. Live probiotic protect intestinal epithelial cells from the 
 effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 2003; 
 52:988-997. 
 

http://www.agpolicy.org/weekcol/567.html


www.manaraa.com

 

43 

Rice DH, Hancock DD, Besser TE. Fecal culture of wild animals for Escherichia coli 
 O157:H7. Vet Rec 2003; 152:82-83. 
 
Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott 
 ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. Hemorrhagic colitis 
 associated with a rare Escherichia coli serotypes. N Engl J Med 1983; 
 308:681-685.  
 
Rodriguez-Palacios A, Staempfli HR, Duffield T, Weese JG. Isolation of bovine 
 intestinal Lactobacullus plantarum and Pediococcus acidilactici with inhibitory 
 activities against Escherichia coli O157:H7 in feedlot cattle.  J Appl Microbiol 
 2009; 106:393-401.    
 
Rolfe RD. Population dynamics of the intestinal tract. In: Colonization control of human 
 bacterial enteropathogens in poultry. LC Blakenship (eds.) Academic Press, Inc., 
 San Diego, CA. 1991: 59-75. 
 
Rolfe RD. The role of probiotic cultures in the control of gastrointestinal health. J Nutr 
 2000; 130(2S Suppl):396S-402S. 
 
Roszak DB, Colwell RR. Survival strategies of bacteria in the natural environment. 
 Microbiol Rev 1987, 51:365-379. 
 
Rozema EA, Stephens TP, Bach SJ, Okine EK, Johnson RP, Stanford IM, McAllister TA. 
 Oral and rectal administration of bacteriophages for control of Escherichia coli 
 O157:H7 in feedlot cattle. J Food Prot 2009; 72:241-250. 
 
Russell JB.  Another explanation for the toxicity of fermentation acids at low pH: anion 
 accumulation versus uncoupling. J Appl Bacterio 1992; 73:363-370.  
 
Ryan PL, Youngblood RC, Harvill J, Willard ST. Photonic monitoring in real time of 
 vascular endothelial growth factor receptor 2 gene expression under relaxin-
 induced conditions in a novel murine would model. Ann NY Acad Sci 2005; 
 1041:398-414. 
 
Ryan PL, Christiansen DL, Hopper RM, Walters FK, Cooley AJ, Moulton K, Willard ST. 
 Use of bioluminescence imaging technology and lux-modified bacteria to 
 determine pathogen progression during uterine infections in the pregnant mare 
 and rate of clearance post partum. Anim Reprod Sci 2010; 121S:S341-S342. 
 
Ryan PL, Christiansen DL, Hopper RM, Walters FK, Moulton K, Curbelo J, Greene JM, 
 Willard ST. Horse Species Symposium: A novel approach to monitoring pathogen 
 progression during uterine and placental infection in the mare using 
 bioluminescence imagine technology and lux-modified bacteria. J Anim Sci 2011; 
 89:1541-1551. 



www.manaraa.com

 

44 

Sargeant JM, Amezcua MR, Rajic A, Waddell L. Pre-harvest interventions to reduce the 
 shedding of E. coli O157 in the faeces of weaned domestic ruminants: a 
 systematic review.  Zoo and Pub Health 2006; 54:260-277. 
 
Scharff, RL 2010.  Health-related costs from foodborne illness in the United  

States.  3 May, Accessed 2010. 
http://www.producesafetyproject.org/admin/assets/files/Health-Related-
Foodborne-Illness-Costs-Report.pdf-1.pdf.      

 
Sheng H, Lim JY, Watkins MK, Minnich SA, Hovde CJ. Characterization of an 
 Escherichia coli O157:H7 O-antigen deletion mutant and effect of the deletion on 
 bacterial persistence in the mouse intestine and colonization at the bovine 
 terminal rectal mucosa. Appl Environ Microbiol 2008; 74:5015-5022. 
 
Shimamune T, Nakamatsu K, Sawamoto K, Nishiki K. Method for electrolyzing water. 
 United  States Patent #5,589,052. 1996. 
 
Simonovic I, Rosenberg J, Koutsouris A, et al. Enteropathogenic Escherichia coli 
 dephosphorylates and dissociates occludin from intestinal epithelial tight 
 junctions. Cell Microbiol 2000;2:305–15. 
 
Siragusa GR, Nawotka K, Spilman SD, Contag PR, Contag CH. Real-time monitoring of 
 Escherichia coli O157:H7 adherence to beef carcass surface tissues with a 
 bioluminescent reporter. Appl Environ Microbiol 1999; 65:1738-1745. 
 
Smarda J, Smajs D. Colicins-exocellular lethal proteins of Escherichia coli. Folia 
 Microbiol 1998; 43:563-582.  
 
Smith DR, Moxley RA, Peterson RE, Klopfenstein TJ, Erickson GE, Bretschneider G, 
 Berberov EM, Clowser S. A two-dose regimen of a vaccine against type III 
 secreted protein reduced Escherichia coli O157:H7 colonization of the terminal 
 rectum in beef cattle in commercial feedlots.  Foodborne Path Dis 2009; 6:155-
 161.  
 
Snekeder KG, Campbell M, Sargeant JM.  A systematic review of vaccination to reduce 
 the shedding of Escherichia coli O157 in faeces of domestic ruminants.  Zoo Pub 
 Health 2011; 59:126-138. 
 
Stanford K, Bach SJ, Marx TH, Jones S, Hansen JR, Wallins GL, Zahiroddini H,  
 McAllister TA. Monitoring Escherichia coli O157:H7 in inoculated and naturally 
 colonized feedlot cattle and their environment. J Food Prot 2005; 68:26-33. 
 
Stanfor d K, Stephens TP, McAllister TA. Use of model super-shedders to define the role 
 of pen floor and hide contamination in the transmission of Escherichia coli 
 O157:H7. J Anim Sci 2011; 89:237-244. 

http://www.producesafetyproject.org/admin/assets/files/Health-Related-Foodborne-Illness-Costs-Report.pdf-1.pdf
http://www.producesafetyproject.org/admin/assets/files/Health-Related-Foodborne-Illness-Costs-Report.pdf-1.pdf


www.manaraa.com

 

45 

Steiner TS, Lima AAM, Nataro JP, Guerrant RL. Enteroaggregative Escherichia coli 
 produce intestinal inflammation and growth impairment and cause interleukin-8 
 release from intestinal epithelial cells. J Infect Dis 1998; 177:88-96. 
 
Stewart V. Nitrate respiration in relation to facultative metabolism in enterobacteria. 
 Microbiol Rev 1988; 52:190-232. 
 
Strockbine NA, Marques RM, Newland JW, Smith HW, Holmes RK, O’Brien AD. Two 
 toxin-converting phages from Escherichia coli O157:H7 strain 933 encode 
 antigenetically  distinct toxins with similar biological activities. Infect Immun 
 1986; 53:135-140. 
 
Synge BA, Chase-Toppings ME, Hopkins GF, McKendrick IJ, Thomson-Carter F, Gray 
 Rusbridge SM, Munro FI, Foster G, Gunn GJ. Factors influencing the shedding of 
 verocytotoxin-producing Escherichia coli O157 by beef suckler cows. Epidemiol 
 Infect 2003; 103:301-312. 
 
Thomson DU, Loneragan GH, Thornton AB, Lechtenberg KF, Emery DA, Burkhardt 
 DT, Nagaraja TG. Use of siderophore receptors and porin proteins-based vaccine 
 to control the burden of Escherichia coli O157:H7 in feedlot cattle. Foodborne 
 Path Dis 2009; 6:871-877. 
 
Tkalcic S, Brown CA, Harmon BG, Jain AV, Mueller EPO, Parks A, Jacobsen KL, 
 Martin SA, Zhao T, Doyle MP. Effects of diet on rumen proliferation and fecal 
 shedding of Escherichia coli O157:H7 in calves.  Appl Environ Microbiol 2000; 
 70:5336-5342. 
 
Tournut J. Applications of probiotics to animal husbandry. Rev Sci Tech Off Int Epiz 
 1989; 8:551-566.  
 
Tutenel AV, Pierard D, Van Hoof J, De Zutter L. Molecular characterization of 
 Escherichia coli O157 contamination routes in a cattle slaughterhouse. J Food 
 Prot 2003; 66:1564-1569.  
 
USDA-FSIS. Recall Case Archive 2011. Accessed 3 Feb 2012. 
 http://www.fsis.usda.gov/fsis_recalls/Recall_Case_Archive_2011/index.asp   
            http://www.fsis.usda.gov/Fsis_Recalls/Open_Federal_Cases/index.asp     
 
USDA-FSIS. FSIS to extend implementation date on routine sampling program for non-
 O157:H7. Accessed 8 Feb 2012.   
 http://www.fsis.usda.gov/News_&_Events/Const_Update_020812/index.asp     
 
  

http://www.fsis.usda.gov/fsis_recalls/Recall_Case_Archive_2011/index.asp
http://www.fsis.usda.gov/Fsis_Recalls/Open_Federal_Cases/index.asp
http://www.fsis.usda.gov/News_&_Events/Const_Update_020812/index.asp


www.manaraa.com

 

46 

Van Baale MJ, Sargeant JM, Gnad DP, DeBey BM, Lechtenberg KF, Nagaraja TG. 
 Effect of forage or grain diets with or without Monensin on ruminal persistence 
 and fecal Escherichia coli O157:H7 in cattle. Appl Environ Microbiol 2004; 
 70:5336-5342. 
 
van der Waaij D, Berghuis de Vries JM, Lekkerkerk JEC. Colonization resistance of the 
 digestive tract in conventional and antibiotic-treated mice. J Hyg 1971; 69:405-
 511. 
 
Viuda-Martos M, Ruiz-Navajas Y, FernAjndez-Lapez J, Perez-Alvarez J. Antibacterial 
 activity of lemon (Citrus lemon L.), mandarin (Citrus reticulate L.), grapefruit 
 (Citrus paradise L.) and orange (Citrus sinensis L.) essential oils. J Food Safety 
 2008; 28:567-576. 
 
Vogt RL, Dippold L. Escherichia coli O157:H7 outbreak associated with consumption of 
 ground beef, June-July 2002. Public Health Report 2005; 120:174-178.   
 
Volanis M, Zoiopoulos P, Panagou E, Tzerkis C. Utilization of an ensiled citrus pulp 
 mixture in the feeding of lactating dairy ewes. Small Rum Res 2006; 64:190-195.  
 
Wadolkowski EA, Sung LM, Burris JA, Samuel JE, O’Brien AD. Acute renal tubular 
 necrosis and death of mice orally infected with Escherichia coli strains that 
 produce shiga-like toxin type II. Infect Immun 1991; 58:3959-3966. 
 
Wang G, Zhao T, Doyle MP. Fate of enterohemorrhagic Escherichia coli O157:H7 in 
  bovine feces. Appl Environ Microbiol 1996; 62:2567-2570.  
 
Wetzel AN, LeJeune JT. Clonal dissemination of Escherichia coli O157:H7 subtypes 
 among  dairy farms in Northeast Ohio. Appl Environ Microbiol 2006; 72:2621-
 2626. 
 
Willard ST, Amstutz MD, Abraham E, Castaño JP, Leaumont DC, Faught WJ, Frawley 
 LS.  Simultaneous indirect activity measurements of GH and PRL genes in the 
 same, living cell: identification of mammosomatotropes. Am J Physiol 1999; 
 277:E1150-E1153. 
 
Willard S, Ryan P, Bailey R, Lawrence M, Estill C, Gandy S, Lay JR,. Development of a 
 novel paradigm for real-time monitoring of bacterial pathogenicity in swine.  J 
 Anim Sci 2002; 85(suppl. 1):31. (Abstr). 
  
Wolin MJ. Volatile fatty acids and the inhibition of Escherichia coli growth by rumen 
 fluid. Appl Microbiol 1969; 17:83-87. 
 



www.manaraa.com

 

47 

Yang HE, Yang WZ, McKinnon JJ, Alexander TW, Li YL, McAllister TA. Survival of 
 Escherichia coli O157:H7 in ruminal or fecal contents incubated with corn or 
 wheat dried distillers’ grain with solubles. Can J Microbiol 2010; 56:890-895. 
 
Zhao T, Tkalcic S, Doyle MO, Harmon BG, Brown CA, Zhao P. Pathogenicity of 
 enterohemorrhagic Escherichia coli in neonatal calves and evaluation of fecal 
 shedding by treatment with probiotic Escherichia coli. J Food Prot 2003; 66:924-
 930. 
 
Zhao H, Doyle TC, Wong RJ, Cao Y, Stevenson DK, Piwnica-Worms D, Contag CH. 
 Characterization of coelenterazine analogs for measurements of Renilla luciferase 
 activity in live cells and living animals. Mol Imaging 2004; 3:43-54. 
 
Zopf D, Roth S. Oligosaccharide anti-infective agents. Lancet 1996; 347:1017-1021. 

 

 



www.manaraa.com

 

48 

CHAPTER III 

SURVIVAL OF ESCHERICHIA COLI O157:H7 (ATCC 43888) TRANSFORMED 

WITH EITHER THE PAK1-LUX OR PXEN-13 PLASMIDS IN BOVINE  

MIXED RUMINAL AND FECAL MICROORGANISM FLUID 

Abstract 

The use of luminescent plasmids in bacteria may serve as a viable model for the 

real-time validation of various pre-harvest interventions on the colonization or shedding 

patterns of Escherichia coli O157:H7 within cattle.  The objective of this study was to 

determine if the growth characteristics of E. coli O157:H7 (ATCC 43888) in mixed 

ruminal and fecal microorganism fluid cultures was altered when transformed with one of 

the two luminescent plasmids: pAK1-lux or pXEN-13.  Transformants harboring the 

luminescent plasmids were compared to the non-transformed parental strain (WT) in 

mixed ruminal and fecal microorganisms fluid media for 6 h in triplicate (n = 3).  The 

transformants and WT grew similarly in the presence of ampicillin (50 µg/mL).  Within 

mixed ruminal microorganism fluid fermentations all transformants grew similarly 

through the 6 h study.  The three transformants also grew similarly within mixed fecal 

microorganism fluid.  The RLU (reflective light units; photon/pixel second) photonic 

emissions of each plasmid within ruminal fluid differed at 0 h (P < 0.002) and 2 h (P < 

0.02) and within fecal fluid 0 h (P < 0.009) and 2 h (P < 0.04).  The RLUs remained the 

same within rumen fluid at 4 h (P < 0.22) and 6 h (P < 0.80) and within fecal fluid at 4 h 

(P < 0.06) and 6 h (P < 0.29).  Growth of E. coli O157:H7 transformed with the 
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bioluminescent plasmids was not altered in comparison to the WT, suggesting that both 

plasmids may serve as useful models for in vivo studies.  

Introduction  

One of the largest food safety threats facing the cattle industry today is the 

foodborne pathogenic bacterium Escherichia coli O157:H7 and other shiga toxin-

producing E. coli (STEC; Gyles, 2007; Karmali et al., 2010).  This bacterium is a natural 

member of the gastrointestinal microbial ecosystem of cattle; it does not cause illness in 

cattle, but can cause severe illness and even death in human consumers (Gyles, 2007; 

Karmali et al., 2010). Many intervention strategies aimed at reducing this critical 

pathogen have been implemented at the abattoir at a cost of more than $2 billion (Kay, 

2003; Koohmaraie et al., 2005; Arthur et al., 2009).  Escherichia coli O157:H7 can also 

be transmitted directly by contact to farm workers and visitors, and it can be carried by 

water run-off to nearby water supplies or irrigated crops (Chapman et al., 2000).  In 2010, 

STEC illnesses were estimated to cost $1 billion dollars due to medical costs associated 

with foodborne illnesses and deaths in the United States (Scharff, 2010).  Because of the 

link between this pathogen in live cattle and human illness, there has been an increased 

focus on the development of pre-harvest intervention strategies that reduce pathogenic 

bacteria in live food animals (Sargeant et al., 2007).   

A limiting factor to pre-harvest intervention development has been the inability to 

physically track STEC or E. coli O157:H7 in a real-time fashion.  Since contamination on 

meat carcasses could potentially originate from fecal material, punctured gastrointestinal 

contents and from feces on hides, a means of tracking of this pathogen through the use of 

biophotonics would provide a valuable model (Lohr, 1996).  Detection of bioluminescent 



www.manaraa.com

 

50 

cells is extremely sensitive when using an intensified charged-coupled device camera, 

with as few as 50 colony forming units being distinguishable (Siragusa et al., 1999).  

Bacteria transformed with luminescent plasmids that constitutively express the 

luxCDABE operon have been reported to have no alterations in growth kinetics compared 

to parental strains (Beyer and Bohm, 1996), and no significant alterations biochemically, 

serologically, or structurally (Chen and Griffiths, 1996).   

The ability to track bioluminescent pathogens in vivo through the gastrointestinal 

tract has previously been successful in pigs and mice (Willard et al., 2002; Burns-

Guydish et al., 2005; Moulton et al., 2009a).   Employing bioluminescence in live animal 

models will facilitate tracking of pathogens (Contag et al., 1997) and can indicate the 

physical location of these pathogens (Siragusa et al., 1999) which will increase 

researchers’ understanding of pathogenic processes (Contag et al., 1995).  However, 

limited information is available for the capability of this technology for monitoring E. 

coli colonization and shedding in vivo. In particular, it is not known whether 

bioluminescent plasmids can be retained within the stressful, competitive environment of 

the gastrointestinal tract. Therefore, the objectives of this study were to analyze the 

parental strain E. coli O157:H7 ATCC 43888 wild type (WT) transformed separately 

with two different bioluminescent plasmids, pAK1-lux and pXEN-13, in order to 

determine whether the growth of E. coli O157:H7 was altered in bovine mixed ruminal 

microorganism fluid or fecal microorganism fluid media in relation to the non-

transformed parental strain.  The present study is a preliminary step in the validation of 

the use of bioluminescent E. coli O157:H7 as a novel real-time model for foodborne 

pathogen contamination. 
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Materials and Methods 

Bacterial Cultivation Conditions 

Escherichia coli ATCC 43888 is an O157:H7 serotype that does not possess the 

shiga toxin I or shiga toxin II genes. This bacterium was routinely cultured on Tryptic 

Soy Agar (TSA; Difco Co., Corpus Christi, TX) at 37°C. The transformation of E. coli 

O157:H7 with the plasmid pXEN-13 (Caliper Life Sciences, Hopkinton, MA), cells were 

washed three times with 10% glycerol and electroporated with 50 µg of the pXEN-13 

plasmid (Sambrook and Russell, 2001).  The E. coli O157:H7 ATCC 43888 was 

transformed with pAK1-lux as previously described by Moulton et al., 2008.  Both 

transformed E. coli O157:H7 were selected for growth on 50 µg/mL of ampicillin (AMP) 

at 37°C; bioluminescence was confirmed by analyzing transformed strains with a 

Berthold/NightOwl camera equipped with the WinLight 32 software, version 2.51.11901 

(Berthold Technologies; Oak Ridge, TN). The 43888 strain was passed through a series 

of increasing concentrations of novobiocin until the cells were made resistant to 10 µg/ml 

novobiocin. 

Pure Culture Growth 

Overnight cultures of the parental strain 43888, 43888 containing pAK1-lux, and 

43888 containing pXEN-13 were cultured in triplicate at 37°C with constant agitation 

(140 rpm) in TSB supplemented with 50 µg/mL AMP or 10 µg/mL novobiocin. 

Overnight cultures (2 mL) were pelleted for 2 min at 10,000 x g, washed once with 2 mL 

of 1X phosphate buffer solution (PBS), and resuspended in 2 mL of TSB in order to 

remove the antibiotics.  Cultures were then diluted 1:100 in TSB supplemented with 50 

µg/mL AMP or 10 µg/mL novobiocin, and 200 µL aliquots were transferred, in duplicate, 
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to a 96-well microtiter plate. The OD600 for each culture grown in both conditions at 37°C 

was measured hourly for 24 h to verify that the plasmids did not slow growth rate, using a 

BioTek (Winooski, VT, USA) Synergy HT multi-mode microplate reader and analyzed 

with Gen5 data analysis software. Maximum specific growth rate was measured during 

exponential phase, while OD600 was less than 0.6 OD600 units and calculated according to 

Callaway and Russell (1999).  

Mixed Ruminal and Fecal Microorganism Contents Collection 

Rumen contents (1000 mL) were collected from the rumen ventral sac of a 362 kg 

cannulated steer at the Henry Leveck Animal Research Center at Mississippi State 

University.  Fecal contents (6000 mL) were collected rectally from six Holstein cows at 

the Joe Bearden Dairy Research Center at Mississippi State University.  Particles were 

separated from the ruminal and fecal fluid by passing contents through nylon paint 

strainers as previously described by Leyendecker et al., 2004.  After separation, rumen 

and fecal fluids were incubated for 30 min at 37°C, which resulted in the formation of 

three visible layers.  The middle layer of both ruminal and fecal fluid were removed and 

utilized for the foundation of media.  The base medium utilized for both rumen and fecal 

fluid contained (per liter): 6.0 g KH2PO4, 6.0 g KH2PO4, 12.0 g (NH4)2SO4, 12.0 g NaCl, 

2.5 g MgSO4•7 H2O, 1.6 g CaCl2•2H2O, 0.04 g cysteine HCl; base medium was sterilized 

by autoclaving.  Then 33.0 mL of an 8% solution of Na2CO3 and 333 mL of ruminal fluid 

or fecal fluid were added and homogenized by mixing.  The pH was adjusted to 6.5 with 

1 M of NaOH solution and bubbled with CO2. Both fully prepared media (Cotta and 

Russell, 1982) were incubated in an orbital shaker at 140 rpm at 37°C for 12 h.   
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Mixed Ruminal and Fecal Microorganism Contents Fermentations 

Fresh overnight cultures, in triplicate prepared as described above, of the parental 

strain 43888, 43888 containing pAK1-lux, and 43888 containing pXEN-13 grown in TSB 

supplemented with the appropriate antibiotic were then diluted 1:100 in 2 mL of TSB and 

allowed to incubate with agitation (140 rpm) at 37°C until mid-log phase (OD600 ~0.50; 

Broadway, 2011) was achieved.  Cultures were then split and aliquotted; one tube for 

ruminal fluid and one for fecal fluid, pelleted by centrifugation at 10,000 x g for 2 min, 

and resuspended in 5 mL of either media containing ruminal or fecal fluid medium.  After 

inoculation, cultures were incubated with constant agitation (140 rpm) at 37°C for 6 h.  

At each 120 min interval, four 100 mL aliquots of each culture were transferred to a 96-

well plate (Costar® Black Sterile Polystyrene; Corning Incorporated, Corning, NY) and 

subsequently imaged.  Photonic emissions were recorded following a 2 min acquisition 

phase and were measured based on reflective light units [RLU; photons/pixel per second 

(ph/pix s)].  Additionally, aliquots of each culture were acquired at 0 h and continuously 

at 120 min intervals for 6 h, diluted in 1X PBS, and plated onto the appropriate selective 

media: parental strain 43888 on TSA+ 10 mg/mL novobiocin, 43888 containing pAK1-

lux or pXEN-13 on TSA+50 mg/mL AMP.  Plates were then incubated at 37°C for 12 h 

prior to analysis, viable plate counts were obtained.  Plates were also imaged using a 

Berthold/NightOwl camera to validate luminescence.  

Statistical Analysis 

Data were analyzed as a completely randomized design with repeated measures 

using PROC MIXED in SAS (SAS Inst. Inc., Version 9.2; Cary, NC).  Experimental unit 

was defined as tube, and significance was declared at P < 0.05.  Pair-wise differences 
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among least squares means at various sample times were evaluated with the PDIFF 

statement. 

Results 

Growth of E. coli 43888 containing pAK1-lux or pXEN-13   

To determine whether pAK1-lux and pXEN-13 plasmids exhibited similar growth 

rates, growth was monitored over a 24 h period using a BioTek Synergy HT plate reader 

(Winooski, VT, USA) [Figure 3.1].   The pAK1-lux (1.05 h-1) and the pXEN-13 (1.02 h-1) 

containing-transformants both exhibited similar maximum specific growth rates as the 

parental strain 43888 (0.99 h-1; Figure 3.1A). No differences were evident between the 

growth rates of pXEN-13 and the parental strain.  Growth of both the pAK1-lux and 

pXEN-13 containing-transformants were also examined in the presence of the selective 

pressure of ampicillin (Figure 3.2B). The growth patterns of both transformants were 

similar, pAK1-lux (1.41 h-1) and pXEN-13 (1.44 h-1) and with no differences observed. 

Growth in Ruminal Fluid Fermentations   

To determine whether differences were evident in the ability of the two plasmids 

to be retained within the rumen; both strains containing either pAK1-lux or pXEN-13 

were grown in the presence of freshly prepared mixed rumen microorganism fluid 

medium. The parental strain was also grown under these conditions to determine whether 

the presence of the plasmids would alter the ability of E. coli O157:H7 to survive.  The E. 

coli O157:H7 and the two transformants grew similarly within mixed ruminal 

microorganism fluid (Figure 3.2).  Growth was monitored by viable plate counts and 

populations were recorded in log10 (CFU/mL) populations.  There was no difference (P > 

0.18) observed within populations between the WT and the pXEN-13 plasmid throughout 
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the study.  The only difference observed within the study was at 4 h, when pAK1-lux had 

greater populations than pXEN-13 (P < 0.004), but was not different from the WT (P > 

0.10).    

Growth in Fecal Fluid Fermentations 

To determine whether the presence of either plasmid would affect the ability of E. 

coli O157:H7 to survive within mixed fecal microorganism fluid, strains containing either 

pAK1-lux or pXEN-13 were grown in the presence of freshly prepared fecal fluid 

medium and compared to growth of the non-transformed parental strain.   The WT and 

the two transformants grew similarly within mixed fecal microorganism fluid 

fermentations (Figure 3.3).  There was no difference (P > 0.14) observed within 

populations between the WT and pXEN-13 for the duration of the study.  The only 

difference observed was at 6 h when pXEN-13 suggested greater populations than pAK1-

lux (P < 0.01) but was not different than the WT (P < 0.18). 

Comparison of Photonic Emissions by pAK1-lux and pXEN-13 

To determine whether photonic light emission would be sustained by both pAK1-

lux and pXEN-13, RLU photonic emissions were monitored over a 6 h period in both 

mixed rumen and fecal microorganism fluid media.  Photonic emissions gradually 

decreased from 0 h for both plasmids within ruminal fluid, indicating that there was a 

time effect (P < 0.001).  The RLU values are measured in photons/pixel second (ph/pix 

s). The RLU values for pAK1-lux ranged from 16225.97 ph/pix s to 880.21 ph/pix s (data 

not reported in tabular form).  The pXEN-13 plasmid had the greatest RLU values at 0 h 

at 292.28 ph/pix s and the lowest at 6 h 86.25 ph/pix s.  The pAK1-lux plasmid had 

greater RLU values and was statistically different at 0 h (P < 0.002) and 2 h (P < 0.02) 
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and as photonic emissions decreased over time both plasmids emitted the similar values 

at 4 h (P < 0.22) and 6 h (P < 0.80), suggesting that there was only a tendency (P < 0.07) 

for a transformant effect.  There was a transformant by time effect (P < 0.001) because 

both time and transformant affect photonic emissions.       

Within mixed fecal microorganisms fluid media both plasmid RLU values 

decreased from 0 h, indicating that time impacted photonic emissions (P < 0.001).  The 

pAK1-lux plasmid ranged from 5513.65 ph/pix s to 1404.42 ph/pix s (data not reported in 

tabular form).  The pXEN-13 plasmid had decreased RLU values with a range from 

112.92 ph/pix s to 34.61 ph/pix s.  The two plasmids were different from 0 h (P < 0.009) 

and 2 h (P < 0.04), with a tendency to be different at 4 h (P < 0.06).  At 6 h the plasmids 

were not different (P < 0.29), further suggesting that a tendency for transformant (P < 

0.06) to impact photonic emissions, while indicating a transformant by time interaction 

(P < 0.001).      

Discussion 

To examine the application of bioluminescent technology in a large animal study, 

we analyzed the growth and luminescence of E. coli 43888 containing either the pAK1-

lux or the pXEN-13 plasmid.  Bioluminescence studies have suggested correlations with 

in vitro enzyme activity; the amount of luciferase protein and lux mRNA generated 

directly correlates with cell viability (Close et al., 2010). The two plasmids utilized in this 

study were selected on the basis of harboring the luxCDABE operon. The pAK1-lux 

plasmid was developed as a wide range host plasmid for gram-negative bacteria (Karsi et 

al., 2006).  Research with this plasmid has suggested stability and luminescence, without 

antibiotic pressure for at least 8 d; while decreasing the percentage of photonic emissions 
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from 0 d (Moulton et al., 2008).   The pXEN-13 plasmid carries the original 

Photorhabdus luminescens operon for production of luminescence in gram-negative 

bacteria (Harms et al., 2009).   The pXEN-13 plasmid has been introduced into E. coli 

strains previously and emitted photonic emissions within the mouse model (Harms et al., 

2009).  The WT containing either pAK1-lux or pXEN-13 exhibited similar growth rates 

under antibiotics pressure.   

Both luxCDABE containing plasmids grew similarly and no differences were 

noted in the growth of the plasmid-equipped bacteria in the presence of AMP, indicating 

that both plasmids grow similarly to the WT parental strain in the absence of AMP, and 

similarly under AMP pressure.  This suggests that even within a live animal model 

without antibiotic pressure, both transformants will function similarly to the WT.   

Many studies have demonstrated that E. coli O157:H7 can be cultured from the 

rumen, but does not grow rapidly or extensively in the rumen (Grauke et al., 2002).   To 

further investigate the growth and stability of WT and the two bioluminscently 

transformed E. coli O157:H7, pAK1-lux and pXEN-13 were inoculated and grown in 

mixed microbial ruminal fluid microorganism fermentations.  There was no difference 

observed in the two transformants compared with the controls when grown in mixed 

microbial ruminal fluid fermentations, thus suggesting that both transformants can 

survive the harsh rumen conditions and grow in a fashion similar to the WT. 

Escherichia coli O157:H7 can contaminate beef carcasses via fecal spread from 

hide or spilled digesta and it has been suggested that 30% of cattle harbor E. coli 

O157:H7 or other EHEC in feces, depending on season (Elder et al., 2000; Callaway et 

al., 2003).   Transformants and WT grew similarly in the presence of a mixed fecal 

microorganism fluid environment throughout the duration of the study.  This suggests 
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that transformants functioned similarly within the fecal fluid environment and are capable 

of surviving the competitive fecal environment.     

Transforming bacteria with the bioluminescent plasmids has been suggested to be 

a successful means of tracking bacteria in real-time (Moulton et al., 2008; Moulton et al., 

2009b; Curbelo et al., 2010).  The present data suggest that the pAK1-lux and pXEN-13 

transformants are stable and can persist in rumen and fecal-like environments.  

Furthermore, while grown in these harsh, competitive environments, these transformants 

still display luminescence and could be a useful method for pathogen tracking in real-

world environments (Moulton et al., 2008).  The use of luciferase reporter genes in real-

time imaging can aid in pre-harvest pathogen intervention in vivo by reducing the number 

of animals needed for use in studies, as well as by providing the physical location of 

pathogen contamination routes (Ryan et al., 2005).   

Conclusions 

Transformation of E. coli O157:H7 with the pAK1-lux gene cassette or the 

pXEN-13 gene cassette did not alter the growth of the transformants compared to the WT 

(ATCC 43888) within mixed ruminal or mixed fecal microorganism incubations.  Our 

results suggest that both plasmids could be implemented for a model for pre-harvest 

pathogen intervention in ruminant animals. 
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Figure 3.1 The OD600 of cultures of the wild type (WT) Escherichia coli O157:H7 
ATCC 43888 (♦) and the two bioluminescently transformed variants, 
43888 containing the plasmid pXEN-13 (▲) or pAK1-lux (■). Cultures 
were grown in the absence of (A) and presence (B) of ampicilloin (50 
mg/mL) to provide selective pressure 
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Figure 3.2 The least square means of Escherichia coli O157:H7 (ATCC 43888) 
populations (log10 CFU/mL) in bovine mixed ruminal microorganism 
incubations. Growth was monitored by viable plate counts with the parental 
strain (♦; WT) or 43888 containing the plasmid pAK1-lux (▲; PAK) or 
pXEN-13 (■; XEN) in bovine mixed ruminal fluid for 6 h. Values represent 
the log10 CFU/mL values from three independent replicates 

x, y Lsmeans lacking a common subscript within column differ (P < 0.05) 
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Figure 3.3 The least square means of Escherichia coli O157:H7 (ATCC 43888) 
populations (log10 CFU/mL) in bovine mixed fecal microorganism 
incubations. Growth was monitored by viable plate counts with the parental 
strain (♦; WT) or 43888 containing the plasmid pAK1-lux (▲; PAK) or 
pXEN-13 (■; XEN) in bovine mixed fecal fluid for 6 h. Values represent 
the log10 CFU/mL values from three independent replicates 

x, y Lsmeans lacking a common subscript within column differ (P < 0.05) 
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CHAPTER IV 

EFFECTS OF CITRUS BY-PRODUCTS ON GROWTH OF O157:H7 AND NON-O157 

ESCHERICHIA COLI SEROTYPES WITHIN BOVINE MIXED RUMINAL 

MICROORGANISM FLUID 

Abstract 

Citrus by-products (CBP) are utilized in citrus regions of the United States as a 

low cost, highly palatability and nutritional component of cattle diets.  Researchers have 

suggested that inclusion of CBP both in vivo and in vitro can inhibit the growth of both 

Escherichia coli O157:H7 and Salmonella (Nannapaneni et al., 2008; Collier et al., 

2010).  The objective of this study was to examine the effects in vitro that varying 

concentrations of CBP in the powdered or pelleted variety impose on enterohemorrhagic 

Escherichia coli (EHEC) serotypes; O26:H11, O103:H8, O111:H8, O145:H28, O157:H7 

and O157:H7 Δstx1stx2 in mixed ruminal microorganism media.  Mixed ruminal 

microorganism fluid media were supplemented with either powdered or pelleted CBP at 

concentrations of 0%, 5%, 10%, 20% and EHEC growth (log10 CFU/mL) were evaluated 

at 0, 2, 4, 6 h.  The O26:H11, O111:H8, O145:H28 and O157:H7 serotypes did not 

exhibit a change in populations throughout both CBP varieties.  The O103:H8 serotype 

displayed an approximate 1 log10 reduction in O103:H8 populations at 5% powdered 

CBP over 6 h.  There was an approximate 1.5 log10 reduction in O157:H7 Δstx1stx2 

populations at 10% CBP and an approximate 5 log10 reduction observed in O157:H7 

Δstx1stx2 populations at 20% powdered CBP over the 6 h study.  There was an 



www.manaraa.com

 

66 

approximate 1 log10 reduction in O103:H8 populations when supplemented with 20% 

pelleted CBP. These results suggest that the serotypes of EHEC grow differently within 

mixed ruminal microorganism fluid media when supplemented with CBP in the 

powdered or pelleted variety.  Further research is needed to indicate the affect that CBP 

have on non-O157 EHEC serotypes. 

Introduction 

Enterohemorrhagic Escherichia coli (EHEC) are capable of naturally colonizing 

within the gastrointestinal tract of cattle, without causing illness (Wells et al., 1991).  

Human consumption of products contaminated with EHEC can cause illness and more 

severely hemorrhagic colitis and hemorrhagic uremic syndrome (Griffin and Tauxe, 

1991; Stanford et al., 2005).  The most notorious EHEC within the meat industry has 

been E.coli O157:H7.  Due to increased surveillance and pre- and post- harvest 

intervention, the occurrence of O157:H7 infections have been reduced to ≤ 1 case per 

100,000 people (CDC, 2011a).   However, there now appears to be an increase in the 

occurrence of foodborne outbreaks due to non-O157 EHEC (CDC, 2011a).  According to 

the Center for Disease Control (CDC) an estimated 265,000 cases of EHEC were 

reported a year; of these, approximately 67% are attributed to non-O157 EHEC (CDC, 

2011b).  With increased concerns related to the prevalence of non-O157 outbreaks the 

USDA-FSIS will be labeling non-O157 EHEC serotypes O26, O45, O103, O111, O121 

and O145 as adulterants in fresh non-intact beef products (USDA-FSIS, 2012).   

The production of citrus for various food and non-food products generates by-

products such as the pulp and peel from citrus fruit.  These citrus by-products (CBP) have 

been utilized by dairy and beef cattle producers in regions of the United States as an 
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inexpensive nutritionally dense feed source (Callaway et al., 2008).  The incorporation of 

CBP into diets for cattle also may aid in the reduction of foodborne pathogens due to 

antimicrobial aspects of the by-products. Citrus products and by-products contain 

essential oils that possess antimicrobial activities that are able to damage the cell wall due 

to lipophilic properties.  The lipophilic properties of essential oils are able to 

permeabilize the cell wall within gram-negative bacteria (Bakkali et al., 2006).  The 

change in the fluidity of the membranes due to the permeabilization, allows essential oils 

to coagulate in the cytoplasm (Gustafson et al., 1998), depleting ATP (Di Pasqua et al., 

2006) and resulting in lysis of the cell (Kim et al., 2005; Fisher and Phillips, 2006; Gill 

and Holley, 2006; Oussalah et al., 2006; Di Pasqua et al., 2007).  Research pertaining to 

essential oils within CBP has indicated severe damage to E. coli serotypes (Kim et al., 

1995; Dusan et al., 2006). The rumen and intestinal gram-negative microbial populations 

of cattle can be altered due to this antimicrobial activity within cattle (Nam et al., 2006).  

Since CBP contain antimicrobial properties and are readily available at low costs within 

citrus-producing areas and has nutritional value, it is being investigated as a potential pre-

harvest pathogen intervention strategy to reduce EHEC concentrations within the 

gastrointestinal tract of cattle.  Therefore, the objective of this study was to examine the 

effects of powdered and pelleted citrus by-products have on growth of the EHEC 

serotypes: O26:H11, O103:H8, O111:H8, O145:H28, O157:H7 and O157:H7 Δstx1stx2 in 

mixed ruminal microorganism media.     
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Materials and Methods 

Ruminal Fluid Collection and Medium Preparation 

Ruminal contents (1000 mL) were collected from the rumen ventral sac of a 544 

kg cannulated steer at the Henry Leveck Animal Research Center at Mississippi State 

University.  Rumen particles were separated from the ruminal fluid by passing contents 

through nylon paint strainers as previously described by Leyendecker et al., 2004.  After 

separation, rumen fluid was incubated for 30 min at 37°C, to allow the fluid to separate 

into three distinct layers.  The middle layer of the rumen fluid was extracted and utilized 

for the mixed ruminal microorganism fluid.  The medium utilized for the mixed ruminal 

microorganism fluid contained (per liter): 6.0 g KH2PO4, 6.0 g KH2PO4, 12.0 g 

(NH4)2SO4, 12.0 g NaCl, 2.5 g MgSO4•7 H2O, 1.6 g CaCl2•2H2O, 0.04 g cysteine HCl; 

base medium was sterilized by autoclaving (Cotta and Russell, 1982).  To the base 

medium, 33.0 mL of an 8% solution of Na2CO3 and 333 mL of ruminal fluid were added 

and homogenized by mixing.  The pH was adjusted to 6.5 with 1 M of NaOH solution, 

and bubbled with CO2.  The fully prepared media was incubated in an orbital shaker at 

140 rpm at 37°C for 12 h.   

Bacterial Serotypes and Cultivation Conditions 

Six serotypes of E. coli included in this study were purchased from the American 

Type Culture Collection (ATCC): O157:H7 (ATCC 43895), O103:k:H8 (ATCC 23982), 

O145:H28 (BAA-2129), O26:H11 (BAA-1653), O111:H8 (BAA-179) and O157:H7 

Δstx1stx2 (ATCC 43888).  All E. coli serotypes were routinely cultured in Luria-Bertani 

medium (LB; Difco Co.; Corpus Christi, TX) at 37°C.  All serotypes were transformed 

with the bioluminescent pXEN-13 plasmid (Caliper Life Sciences; Hopkinton, MA), as a 
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marker for means of antibiotic selection for identification following incubation.  For 

transformation with the pXEN-13 plasmid all serotypes were made competent by 

washing mid-log cultures four times with ice cold 10% glycerol. Competent cells were 

then transformed with pXEN-13 by electroporation and cultured in LB supplemented 

with 100 mg/mL of ampicillin (AMP) using standard techniques (Sambrook and Russell, 

2001).   

Citrus By-Product Trial 

Isolates from fresh streaks of each serotype transformed with pXEN-13 on LB 

agar supplemented with 100 µg/mL AMP were used to inoculate a 5 mL starter culture in 

LB broth+AMP at 16 h at 37°C. Cultures were then diluted 1:100 in LB broth+AMP and 

allowed to grow to mid-log phase, after which cultures were pelleted, residual medium 

was removed, and cells were resuspended in an equal volume of mixed ruminal 

microorganism fluid media supplemented with 0, 5, 10 or 20% CBP. Cultures were 

incubated at 37°C at 140 rpm. Aliquots were removed at various times, diluted in 1X 

phosphate buffered saline (PBS), plated onto LB agar supplemented with 100 µg/mL 

AMP, and incubated overnight at 37°C.  The pH values were measured from each 

serotype at each time interval at the various CBP concentrations recorded. 

Statistical Analysis 

Data were analyzed as a completely randomized design with repeated measures 

using PROC MIXED in SAS (SAS Inst. Inc., Version 9.2; Cary, NC).  Experimental unit 

was defined as tube, and significance was declared at P < 0.05.  Pair-wise differences 

among least squares means at various sample times were evaluated with the PDIFF 

statement. 
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Results 

Citrus By-Products pH Values 

The pH values of each CBP variety at 0%, 5%, 10% and 20% at each time 

interval were recorded.  The pH was adjusted to 6.5 at -2 h prior to the addition of CBP in 

either variety.  From -2 h to 6 h, pH increased within all serotypes from 6.5 to 7.5 for 0% 

CBP.  At 0 h the pH was 5.5 and decreased to 4.0, in the 5%, 10% and 20% CBP 

throughout the study for both varieties.  The pH values of the powdered CBP decreased 

according to the increasing concentrations over the time intervals. The pelleted CBP 

variety indicated a similar trend, with pH values decreasing with the increase in pelleted 

CBP concentrations across the 6 h study. 

Powdered Citrus By-Product 

The growth of the various EHEC populations (log10 CFU/mL) within mixed 

ruminal microorganism fluid media indicated differences within serotypes (Table 4.1).  

The O26:H11 and O145:H28 serotypes grew similar (P < 0.11) within the powdered 

CBP.  The only difference observed in O26:H11 serotype’s decreased (P < 0.006) 

populations at 4 h supplemented with 20% powdered CBP throughout the study.   The 

O103:H8 serotype exhibited approximately a 1 log10 reduction in populations over the 6 h 

study, when mixed ruminal microorganism media was supplemented with 5% powdered 

CBP. The O157:H7 Δstx1stx2 and O157:H7 serotypes had decreased (P < 0.04 and P < 

0.05, respectively) populations in comparison to the other serotypes at 0 h.  Although 

both O157 serotypes tended to grew similarly (P < 0.06) throughout 4 h, there was a 

difference observed at 6 h when O157:H7 Δstx1stx2 had greater decreases (P < 0.03) in 

populations in comparison to O157:H7.  When supplemented with 10% powdered CBP 
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the O157:H7 Δstx1stx2 serotype displayed approximately a 1.5 log10 reduction in 

populations, and at 20% powdered CBP there was approximately a 5 log10 reduction in 

populations over the 6 h course of the study. 

Pelleted Citrus By-Product 

The growth of the EHEC populations within mixed ruminal microorganism fluid 

media indicated differences between the various serotypes (Table 4.2).  The pelleted CBP 

tended to have no change (P < 0.07) in populations of O145:H28 from 0 h to 6 h.  While 

O157:H7 had decreased (P < 0.02) at 0 h, there were no differences in populations 

observed between the O103:H8 and O157:H7 (P < 0.11) the remainder of the study.  

Populations of O103:H8 were decreased (P < 0.02) at 0 h, while populations tended to be 

similar (P < 0.06) to O111:H8 throughout the study.  When mixed ruminal 

microorganism media was supplemented with 20% pelleted CBP there was 

approximately a 1 log10 reduction observed over the 6 h study.  The O26:H11 serotype 

populations decreased (P < 0.05) throughout the study, exhibiting the least populations at 

4 h.  Escherichia coli O157:H7 Δstx1stx2 exhibited the most decreased (P < 0.05) EHEC 

populations at 0 h and throughout the study.   

Discussion 

A study conducted by Free et al. (2012) utilized the same serotypes within this 

study O26:H11, O103:H8, O111:H8, O145:H28, O157:H7 and O157:H7 Δstx1stx2. The 

results of this study suggested that all serotypes were capable of growing with mixed 

ruminal microorganism fluid media; with decreased concentrations of serotypes O103:H8 

and O145:H28 after 24 h compared to O157:H7 (Free et al., 2012).  These data suggests 

the possibility that not all non-O157 serotypes function similarly within cattle.   
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The O157:H7 Δstx1stx2 data indicated decreased populations within the mixed 

rumen microorganism fluid media supplemented with powdered CBP, while O103:H8 

indicated decreased populations within both varieties of CBP.  These results are in 

accordance with previous studies that have suggested a decrease in O157:H7 populations 

using other varieties of CBP.  Callaway et al. (2008) supplemented mixed ruminal 

microorganism fluid media with 0%, 0.5%, 1% and 2% dried orange pulp and E. coli 

O157:H7 populations decreased according to increasing concentrations.  While another 

Callaway et al. (2011) study supplemented sheep rations with 0%, 5%, 10% orange peel 

and reduced E. coli O157:H7 populations in vivo. 

The CBP was added to the mixed ruminal microorganism fluid media 2 h before 

the serotypes were added to the mixture (0 h).  Although a decrease in O103:H8 and 

O157:H7 Δstx1stx2 populations were observed, other EHEC populations were not 

affected.  Given that this study was only conducted for 6 h, the effects of CBP within the 

mixed ruminal microorganism fluid media and EHEC serotypes may not had been fully 

observed within the short time frame.  Others studies indicate that CBP decrease E. coli 

O157:H7 populations from 24 h to 72 h (Callaway et al., 2008; Callaway et al., 2011).  

This study was only conducted for 6 h; an increased duration of the study could have 

been more beneficial to observe the effects of CBP on the various serotypes. 

The essential oils within the CBP can permeabilize the bacterial cells walls and 

cytoplasm, leading to bacterial lysis, thus shifting the rumen environment leading to an 

increase in short-chain fatty acids while decreasing the pH.  The acidic environment 

creates less favorable conditions for microbial populations to survive and replicate 

within, thus decreasing the possibility of E. coli O157:H7 populations.   Although our 

research has reported a decrease in pH values with increasing CBP concentrations and an 
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observed decrease in O103:H8 and O157:H7 Δstx1stx2 populations, this same trend was 

not observed within other EHEC serotypes.  Further research is needed to determine how 

the various EHEC serotypes affect E. coli populations within mixed ruminal 

microorganism fluid media when supplemented with CBP. 

Conclusion 

Enterohemorrhagic Escherichia coli are foodborne pathogens that can survive 

within the gastrointestinal tract of cattle without imposing illness.  Essential oils are the 

main component of citrus by-products and have been suggested to contain antimicrobial 

properties.  Although decreased populations were observed within the O103:H8 and 

O157:H7 Δstx1stx2 serotypes other EHEC serotypes were not affected.  Further research 

is needed to conclude how CBP affect non-O157 EHEC serotypes within mixed ruminal 

microorganism fluid media. 
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Table 4.1 Least squares means for growth of enterohemorrhagic Escherichia coli 
(EHEC) O26:H11, O103:H8, O111:H8, O145:H28, O157:H7 and O157:H7 
Dstx1stx2 within bovine mixed rumen microorganism fluid medium, 
supplemented with 0%, 5%, 10% and 20% powdered citrus by-product 
(CBP) over time (h) 

        
CBP 
(%) 

Time 
(h) O26:H11 O103:H8 O111:H8 O145:H28 O157:H7 

O157:H7 
Δstx1stx2 

0%        
 0 h     7.55     7.11      6.93       7.55     6.03v     6.46 
 2 h     7.68     7.05         6.70       7.58     6.91w     7.00 
 4 h     7.60     6.81      6.92       8.06     6.91w     7.19 
 6 h     7.73     6.65      7.07       7.83     7.24w     6.98 

5%        
 0 h     7.40     7.34y      7.31v       7.57     6.73     6.63 
 2 h     7.47     6.86yz      7.06v       7.64     6.65     6.41 
 4 h     7.43     6.95yz      5.85w       7.80     6.77     7.09 
 6 h     7.59     6.55z      7.22v       7.80     7.02     6.74 

10%        
 0 h     7.43     7.28      6.64       7.73     6.83     6.82vw 
 2 h     7.43     6.90      7.33       7.56     7.22     6.18w 
 4 h     7.36     6.99      7.18       7.64     6.96     7.13v 
 6 h     7.66     6.69      7.25       7.63     6.98     4.19x 

20%        
 0 h     7.12v     7.13      7.02       7.60     7.03     7.03v 
 2 h     7.54v     7.33      6.78       7.52     6.94     6.53v 
 4 h     5.96w     7.07      6.65       7.44     7.30     7.34v 
 6 h     7.19v     6.66      6.70       7.66     7.00     1.99w 
        

v, w, x Lsmeans within a column, within a treatment, without a common subscript are 
different between treatment groups if (P ≤ 0.05) 
y, z Lsmeans within a column, within a treatment, without a common subscript within 
column tend to differ (P < 0.09) 
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Table 4.2 Least squares means for growth of enterohemorrhagic Escherichia coli 
(EHEC) O26:H11, O103:H8, O111:H8, O145:H28, O157:H7 and O157:H7 
Dstx1stx2 within bovine mixed rumen microorganism fluid medium, 
supplemented with 0%, 5%, 10% and 20% pelleted citrus by-product (CBP) 
over time (h) 

        
CBP 
(%) 

Time 
(h) O26:H11 O103:H8 O111:H8 O145:H28 O157:H7 

O157:H7 
Δstx1stx2 

0%        
 0 h  9.27x 7.01x  8.47x   9.61  8.48  6.46 

   2 h    8.08y   7.01x      9.01xy     9.48    8.24    6.28 
 4 h  9.45x 8.64y  8.43x   9.67  8.79  6.26 
 6 h  9.64x 8.77y  9.48y   9.50  9.01  6.51 

5%        
 0 h   9.27xy 8.21   8.40xy   9.51   9.23x  6.07 
 2 h       8.71x 8.26  8.93x   9.60   7.94y  5.92 
 4 h       7.29z 7.93  7.98y   9.59   7.96y  6.23 
 6 h       9.71y 8.28  8.77x   9.69   8.93x  5.97 

10%        
 0 h   9.07xz 8.76   8.76xy   8.98    8.73xy  6.83 
 2 h   8.43xy 8.50   9.03xy   9.01    8.73xy  6.94 
 4 h  7.90y 8.37  8.66x   9.55    8.40xy  6.64 
 6 h  9.59z 8.07  9.73y   9.71   9.20y  6.68 

20%        
 0 h  9.47x  8.52x        9.03    9.29x   8.00x  6.78 
 2 h       8.98x  8.51x        8.92     9.79xy   8.95y  6.77 
 4 h       7.69y  8.57x        9.09    8.95y    8.71xy  6.76 
 6 h       9.54x  7.43y        9.46     9.48xy   9.05y  7.13 
        

x, y, z Lsmeans within a column, within a treatment, without a common subscript are 
different between treatment groups if (P ≤ 0.05) 
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CHAPTER V 

EVAULATION OF THE COLONIZATION OF ESCHERICHIA COLI O157:H7 

WITHIN THE SWINE GASTROINESTINALTRACT 

Abstract 

The objective of this study was to monitor the colonization and survival of 

Escherichia coli O157:H7 (ATCC 43888) in the swine gastrointestinal (GI) tract through 

the use of bioluminescent technology and viable plate counts.  Twelve weanling pigs (18-

21 d) were orally inoculated with 7.0 x 109 CFU/mL of E. coli O157:H7 containing the 

bioluminescent plasmid pAK1-lux at the following intervals: -10 d, -7 d, -2 d and -1 d 

pre-mortem (0 d).  Colonization of E. coli+pAK1-lux was then analyzed in the 

duodenum, jejunum, ileum, cecum, colon and rectum by viable plate counts and also 

through luminescent imaging.  The bacterial populations (log10 CFU/mL) increased (P < 

0.001) as the incubation period decreased, with the 1 d incubation period exhibiting the 

greatest bacterial populations within all intestinal sections analyzed, with the exception of 

the jejunum.  Following the removal of intestinal contents, each section was individually 

rinsed to remove any E. coli O157:H7+pAK1-lux that may have adhered to the intestinal 

endothelial lining and subsequently analyzed. Data suggest that upon initial exposure to 

E. coli O157:H7, there is a propensity for the bacteria to colonize throughout the GI tract 

within 1 d.  Although the 1 d exposure displayed the greatest populations within the GI 

rinse, 1 d also displayed similar populations (P < 0.21) within all the sections of the 1 d 

treatment.  This study demonstrates that E. coli+pAK1-lux were successfully monitored 
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through the GI tract of swine, and a colonization pattern was observed.  Further research 

is needed to validate if E. coli O157:H7 transformed with the pAK1-lux bioluminescent 

plasmid could serve as a valid model for long-term in vivo studies. 

Introduction 

In 2011 E. coli O157:H7 was responsible for an estimated 1 million pounds of 

ground beef recalled in the United States due to possible contamination (USDA-FSIS, 

2011).  Controlling and eliminating fecal shedding of Escherichia coli O157:H7 in food 

animals has been a major issue in pre-harvest food safety and has prompted 

investigations into intervention strategies to reduce colonization and shedding in 

livestock (Genovese et al., 2000; Callaway et al., 2003).  Many pre-harvest intervention 

strategies have proven to reduce E. coli O157:H7 populations but are not economically 

feasible to the producer or are not implemented due to the lack of producer utilization and 

acceptance.  Therefore, to date there has been no confirmed method to fully control or 

eliminate E. coli O157:H7 shedding (Huffman, 2002; Callaway et al., 2009).    

Historically, swine have not been commonly linked to enterohemorrhagic E. coli 

(EHEC) because unlike cattle, swine are susceptible to EHEC infections (Anderson et al., 

2001).  Escherichia coli O157:H7 is capable of attaching to swine’s large intestine 

epithelial cells in a mechanism similar to that observed in humans (Francis et al., 1986; 

Tzipori et al., 1986), thus effacing the microvilli and inducing illness (Donnenberg et al., 

1993).   However, data is surfacing that suggest swine may be asymptomatic carriers of 

the E. coli O157:H7 pathogen (Borie et al., 1997; Anderson et al., 2001; Callaway et al., 

2004).  For instance, in 1997, 68% of pigs that were sent to harvest in Santiago, Chile, 

were harboring EHEC (Borie et al., 1997; Anderson et al., 2001).  In 1999, E. coli 
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O157:H7 was isolated from swine that were sent to harvest in the Netherlands (Heuvelink 

et al., 1999).  Also in 2007, a nationwide spinach-associated E. coli O157:H7 outbreak 

was linked to feral swine in California (Jay et al., 2007).    

Real-time tracking of pathogens can aid in the monitoring and understanding of 

physiological events, pathogenesis and colonization patterns of bacteria both in vivo and 

in vitro (Contag et al., 1995; Contag et al., 1997; Siragusa et al., 1999; Ryan et al., 2010).  

Successful in vivo tracking of Salmonella typhimurium transformed with the pAK1-lux 

bioluminescent plasmid was achieved within the swine model (Willard et al., 2002; 

Moulton et al., 2009b).  Moulton et al. (2009b) inoculated swine with S. 

typhimurium+pAK1-lux and monitored tracking within the small intestinal tract within a 

12 h period.  Additionally, S. typhimurium and E. coli transformed with various 

luxCDABE operons have been successfully implemented within murine gastrointestinal 

(GI) tract models (Burns-Guydish et al., 2005; Foucault et al., 2010).  Ex vivo tracking of 

E. coli transformed with the Xen-14 bioluminescent plasmid has been successful in the 

bovine (Curbelo et al., 2010) and E. coli containing pAK1-lux within the ovine (Moulton 

et al., 2009a) reproductive tracts, suggesting that an in vivo application of this technology 

in a swine model is possible. Therefore, the objective of this study was to determine 

whether E. coli O157:H7 transformed with the pAK1-lux bioluminescent plasmid could 

be successfully monitored within the GI tract of weanling pigs. 

Materials and Methods 

Bacterial Cultivation Conditions 

Escherichia coli O157:H7 ATCC 43888 (Δstx1stx2) was transformed with the 

pAK1-lux plasmid by methods previously described by Moulton et al. (2009a). The E. 
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coli O157:H7+pAK1-lux is routinely cultured on tryptic soy agar (TSA; Difco Co., 

Corpus Christi, TX) supplemented with 50 µg/mL ampicillin (AMP) at 37°C. 

Luminescence was verified after transformation using a Berthold/NightOwl camera 

equipped with the WinLight 32 software, version 2.51.11901 (Berthold Technologies; 

Oak Ridge, TN). A fresh, 24 h culture of E. coli O157:H7+pAK1-lux cultivated in tryptic 

soy broth (TSB; Difco Co., Corpus Christi, TX) supplemented with 50 µg/mL AMP at 

39°C was used for each inoculation challenge. 

Swine Trial 

All experimental procedures were performed in accordance with the Guide for the 

Care and Use of Agricultural Animals in Research and Teaching and approved by the 

Institutional Animal Care and Use Committee of the USDA-ARS. Twelve weanling 

Yorkshire-Landrace crossbred pigs 18-21 d of age were obtained for this study. Three 

pigs were orally inoculated via a 10 mL dose oral gavage to achieve an approximate 

inoculation per pig of 7.0 x 109 CFU/mL at -10 d, -7 d, -2 d, and finally at -1 d prior to 

euthanization (0 d).  Pigs were humanely euthanized and the duodenum, jejunum, ileum, 

cecum, colon and rectum were aseptically removed from each individual pig; the anterior 

and posterior ends of each respective section of the GI tract were tied using sterile zip 

ties.   

Gastrointestinal Tract Sections 

Each section from each individual weanling pig was stored at 4°C and analyzed 

within 24 h of collection.  Contents from each section were collected, homogenized, and 

either transferred to a 96-well black sterile plate (Costar®, Corning Inc.; Corning, NY) 

for imaging or serially diluted in 1X phosphate buffer saline (PBS) and plated onto TSA 
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supplemented with 50 µg/mL AMP in duplicate for validation of E. coli+pAK1-lux.  A 

10 min acquisition period was used for imaging contents from each section using a 

Berthold/NightOwl camera.  Photonic emissions were recorded in RLU, which are 

measured in photons/pixel second (ph/pix s).  Plates were incubated for 12 h at 37°C prior 

to analysis and were also subsequently imaged to validate luminescence.   

Following the collection of contents, the jejunum, ileum, and duodenum were 

divided into subsections in order to image the entire portion of the tract. The jejunum and 

ileum were both divided into three sections: posterior, middle and anterior. The 

duodenum was divided into two sections.  Each section or subsection was incubated 

briefly to reach an internal temperature of 37°C and then subsequently imaged.  The RLU 

values were recorded as previously described above for the intestinal contents analysis. 

Gastrointestinal Tract Rinse 

Following imaging, each section was stomached (Seward Stomacher® 400 

Circular; West Sussex, United Kingdom) at 240 rpm for 1 min in 5 mL of 1X PBS.  An 

aliquot of each dissected section was serially diluted in 1X PBS and plated on TSA 

supplemented with 50 µg/mL AMP and incubated for 12 h at 37°C. An additional 2 µL 

aliquot was transferred to a 96-well plate and imaged to measure photonic emissions as 

described above.  After incubation, plates were analyzed and subsequently imaged to 

validate luminescence.    

Statistical Analysis 

Data were analyzed as a completely randomized design with repeated measures 

using PROC MIXED in SAS (SAS Inst. Inc., Version 9.2; Cary, NC).  Experimental unit 

was defined as section, and significance was declared at P < 0.05.  Pair-wise differences 
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among least squares means at various sample times were evaluated with the PDIFF 

statement. 

Results 

Gastrointestinal Tract Contents 

To analyze the colonization of E. coli O157:H7 throughout the GI tract of swine, 

the duodenum, jejunum, ileum, cecum, colon and rectum were collected and contents 

were removed and analyzed for the presence of E. coli O157:H7+pAK1-lux. Analysis 

was based on viable plate count populations in log10 (CFU/mL) within each section, as 

well as on incubation periods within each section (Table 5.1).  The 1 d incubation period 

had the greatest viable plate count populations observed within the ileum, cecum, colon 

and rectum.  Incubation period (P < 0.001) decreased viable plate counts as incubation 

period increased.  There were differences observed within the duodenum (P < 0.02), 

cecum (P < 0.02) and rectum (P < 0.03) when comparing the 1 d and 2 d incubation 

periods.  There were similar populations observed within 7 d and 10 d populations with 

the only difference observed within the duodenum (P < 0.001), with 10 d displaying 

decreased populations.   The E. coli+pAK1-lux were initially observed within the 

jejunum, ileum, cecum and rectum within 1 d incubation period.  There were greater 

populations observed within the jejunum and ileum in the 2 d, 7 d and 10 d incubation 

periods.   There were no differences observed within the colon and rectum populations of 

the 2 d (P < 0.90), 7 d (P < 0.63) and 10 d (P < 0.36). 

Photonic emissions from the E. coli+pAK1-lux were measured in RLU (ph/pix s) 

using the Berthold NightOwl camera.  The RLU values of the GI content ranged from 

38.67 ph/pix s to 53.41 ph/pix s (data not reported in tabular form).  The incubation 
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period (P < 0.74) and section (P < 0.52) did not affect the capabilities of the pAK1-lux 

plasmid to emit photons, thus exhibiting luminescence.  There was no difference in RLU 

values observed within each individual section; duodenum (P < 0.27), jejunum (P < 

0.35), ileum (P < 0.19), cecum (P < 0.23), colon (P < 0.32) and rectum (P < 0.12), 

respectively.   

Gastrointestinal Tract Rinse 

After the GI content was removed, each section was stomached in 1X PBS to 

remove any E. coli O157:H7 cells that might have adhered or colonized along the 

intestinal endothelial lining. The 1 d incubation period had the greatest populations 

within all rinse of the GI tract and had similar populations when compared to the 2 d 

incubation period except within the duodenum (P < 0.003; Table 5.2).  The 7 d and 10 d 

incubation period data indicated that no difference within populations of the section with 

the exception of the duodenum (P < 0.009), which had greater populations observed at 7 

d.  

The E. coli+pAK1-lux initially were observed within the cecum, jejunum and 

ileum within 1 d and 2 d incubation periods.  Greater populations of adhered cells were 

observed within the cecum, colon and rectum at 1 d incubation period in comparison to 

the other incubation periods, thus suggesting the possibility of E. coli O157:H7 being 

shed.  

The RLU values from the GI sectional rinse were similar to the GI content values.  

The GI rinse values ranged from 37.09 ph/pix s to 43.09 ph/pix s (not reported in tabular 

form).  The incubation period (P < 0.61) or the section (P < 0.21) did not affect the 

photonic emissions or luminescent capabilities of the pAK1-lux plasmid. There was no 
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difference in RLU values observed within each individual section; duodenum (P < 0.63), 

jejunum (P < 0.27), ileum (P < 0.17), cecum (P < 0.46), colon (P < 0.16) and rectum (P < 

0.63).  

Discussion 

Since most E. coli O157:H7 infections are acquired through the consumption of 

contaminated food products, there have been numerous pre- and post- harvest 

intervention strategies implemented to reduce prevalence of this dangerous bacterium.  

Here, we utilized bioluminescent technology to determine pathogen survival and 

movement within the GI tract of a simple stomached animal. By employing 

bioluminescence as a monitoring device, researchers can obtain a better understanding of 

pathogen location and will have potential capabilities of real-time tracking and 

monitoring of pathogens. 

When comparing the GI content treatments over the course of a 1 d infection, 

significant changes in the colonization pattern of E. coli O157:H7 were observed within 

each section.  Overall, there were greater E. coli O157:H7 populations observed within 

the GI rinse than compared to the GI content.  This data indicates that the E. coli 

O157:H7 was more apt to adhere to the intestinal endothelial lining rather than remain 

loose or sloughed within the GI tract.  

The greatest populations of E. coli O157:H7 within the GI content were observed 

in the small intestine (duodenum, jejunum, ileum).  These data indicate that E. coli 

O157:H7 is able to colonize successfully within the small intestine within 1 d post-

exposure.  The 1 d incubation period exhibited greater populations that had adhered to the 

intestinal lining, while the 10 d incubation period exhibited decreased populations within 
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the cells that did not adhere.  This correlates with the increase observed initially within 

the rectum populations, suggesting that that non-adhered populations are being shed.  

These data propose that E. coli O157:H7 is able to resist bacterial properties within the 

GI tract such as bile, and still colonize and cause infection.   This suggests that upon 

initial exposure to the pathogen, there is a propensity for the bacteria to colonize 

throughout the GI tract within 1 d.  The E. coli O157:H7 populations with an increased 

incubation period such as 7 d and 10 d post-exposure tend to exhibit decreased 

populations being colonized and sloughed through the GI tract.  

The GI content and GI sectional rinse exhibited similar photonic emission values 

and results, indicating that each section exhibited relatively the same amount of photonic 

emissions.  All sections exhibited luminescence with little difference observed across 

incubation groups.  Although, the photonic emissions that were obtained were relatively 

low, these data are in accordance with results previously obtained from our lab, which 

indicate that photonic emissions from the pAK1-lux plasmid decrease over time (Duoss, 

unpublished).  It is possible that the stability of the pAK1-lux plasmid is compromised in 

the absence of AMP in vivo, resulting in a decrease of photonic emissions. This is 

supported by results reported by Moulton et al. (2009a) that indicated in the presence of 

AMP, there were 100% photon emitting bacteria; and in the absence of AMP there was a 

significant decrease after 1 d. Although no section exhibited luminescence upon imaging, 

photonic emissions and viable plate counts ensure that the plasmid, pAK1-lux was 

retained and E. coli O157:H7 were present.  The use of a more sensitive coupled-camera 

device, such as the Stanford Photonic Imaging System (XR/MEGA-10Z; Stanford 

Photonics Inc., Palo Alto, CA), might be more viable for this study, than the 

NightOwl/Berthold camera used. Therefore, it is still possible that biophotonic 
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technology could be beneficial to understanding bacterial pathogenesis and colonization 

patterns in vivo.  Further research is needed, though, to increase the sensitivity of the 

procedure used. 

Conclusion 

Transformation of E. coli O157:H7 with the pAK1-lux gene cassette did exhibit 

luminescence within the GI tract implemented within the swine model.  Considering that 

pathogen tracking was successful in the monogastric, simple stomached model, this gives 

inspiration that pathogen tracking could be utilized within the ruminant, more complex 

stomached model and be successful within a restricted time frame.  Further research is 

needed to validate if E. coli O157:H7 transformed with the pAK1-lux bioluminescent 

plasmid could serve as a valid model for long-term in vivo study.
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CHAPTER VI 

CONCLUSION 

Due to various pre- and post- harvest intervention strategies implemented 

throughout harvesting and processing plants, the United States food supply is one of the 

safest in the world. Although safe, foodborne pathogenic bacteria, such as 

enterohemorrhagic Escherichia coli, (EHEC) are still a threat to human health and well-

being.  Pre-harvest intervention strategies are extensively being researched to discover 

methods to reduce and/or eliminate EHEC and E. coli O157:H7 populations in cattle and 

decrease the potential for spread and contamination.  

Researchers have suggested that the incorporation of citrus by-products within 

cattle diets may be a successful EHEC and E. coli O157:H7 pre-harvest intervention 

strategy.  The essential oils within the citrus by-products possess antimicrobial activities 

that assert lipophilic properties on pathogens, by increasing permeabilization of the 

bacteria cell wall and cytoplasm, thus destroying the bacteria.  Although previous 

research suggests that all EHEC function similarly, results presented in this thesis suggest 

that when citrus by-products in the powder or pelleted variety were supplemented to 

mixed ruminal microorganism fluid media, EHEC populations were affected differently.  

While the EHEC serotypes O26:H11, O111:H8, O145:H28 and O157:H7 populations 

were not affected, the O103:H8 and O157:H7 Δstx1stx2 (ATCC 43888) had decreased 

populations.  Further research is needed to indicate the effects of citrus by-products on 

EHEC serotypes and the differences observed within the various EHEC serotypes.       
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One of the main limitations to pre-harvest food safety intervention strategies is the 

inability to successfully monitor and track pathogens in real-time.  The transformation of 

E. coli O157:H7 with bioluminescent plasmids could aid in the tracking of pathogens.  

Escherichia coli O157:H7 transformed with the bioluminescent plasmids pAK1-lux and 

pXEN-13 grew similarly within mixed ruminal microorganisms fluid media, suggesting 

that bioluminescent plasmids do not alter the abilities of E. coli O157:H7 to thrive in 

rumen-like conditions of cattle.  The implementation of bioluminescent plasmids can also 

serve as a research tool for comprehending the pathogenesis, pathogen location and 

physiological systems in vivo.  Escherichia coli O157:H7 transformed with the pAK1-lux 

bioluminescent plasmid was successfully monitored through the gastrointestinal tract of 

weanling pigs with incubation periods of 10, 7, 2, and 1 day.  Successful pathogen 

tracking within the monogastric, simple stomached model, gives inspiration that pathogen 

tracking could be utilized within more complex stomached model, such as cattle and be 

successful within a restricted time frame. Further research is needed to validate if E. coli 

O157:H7 transformed with the bioluminescent plasmids can serve as a valid model for 

long-term in vivo studies. 
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